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ABSTRACT: Despite the importance of the on-surface Ullmann
coupling for synthesis of atomically precise carbon nanostructures, it
is still unclear whether this reaction is catalyzed by surface atoms or
adatoms. Here, the feasibility of the adatom creation and adatom-
catalyzed Ullmann coupling of chloro-, bromo-, and iodobenzene on
Cu(111), Ag(111), and Au(111) surfaces is examined using density
functional theory modeling. The extraction of a metal atom is found
to be greatly facilitated by the formation of strong phenyl−metal
bonds, making the extraction energy barrier comparable to, and in the
case of Ag(111) even lower than, that for the competing surface-
catalyzed phenyl−phenyl bond formation. However, if the phenyl−
adatom bonds are too strong, as on Cu(111) and Ag(111), they
create an insurmountable barrier for the subsequent adatom-catalyzed C−C coupling. In contrast, Au adatoms do not bind phenyl
groups strongly and can catalyze the C−C bond formation almost as efficiently as surface atoms.

The unique and tunable properties of π-conjugated
nanomaterials such as graphene nanoribbons1−5 and

two-dimensional conjugated organic polymers6−16 make them
promising candidates for a variety of electronic and
optoelectronic devices. Practical applications of these materials
in devices require scalable methods to create extended
structures with low defect density. The Ullmann coupling of
aryl halides on metal surfacescopper, silver, and goldis
currently the most promising bottom-up strategy to assemble
atomically precise π-conjugated carbon nanostructures with a
high degree of control over their electronic properties.2,7,17−26

The mechanism of the surface-confined Ullmann coupling
has been studied with a variety of experimental techniques
including scanning tunneling microscopy (STM), atomic force
microscopy (AFM), and temperature-programmed reaction
spectroscopy.27−37 Experimental investigation is often aug-
mented by computer modeling crucial for interpreting
ambiguous experimental data. It is widely accepted that aryl
halide molecules physisorbed on a metal surface dissociate
with the formation of surface-bound halogens and aryl
groups.27,35,38,39 The aryl intermediates diffuse on the surface
and, once sufficiently close to each other, combine with the
formation of an organometallic carbon−metal−carbon bridge
structure. This intermediate undergoes reductive elimination
to form a covalent carbon−carbon bond between the two aryls.
Although substantial progress has been made elucidating the

mechanism of the Ullmann coupling, our knowledge of several
details remains incomplete. Experimental data has been
interpreted based almost exclusively on models that describe
metal surfaces as ideal, perfectly ordered structures. Metal

surfaces, however, are not free of defects. These defects range
from three-dimensional defects such as pores40 and cracks41 to
planar defects such as twin boundaries42 and stacking faults,43

line defects such as dislocations,44 and to point defects such as
adatoms45 and vacancies.46

Although the equilibrium concentration of adatoms on metal
surfaces is expected to be small47,48on the order of 10−9 on
Cu and Ag around room temperature48due to the high
energy of their formation,49 such pre-existing adatoms have
been known to form on copper, silver, and gold surfaces50,51

near terrace edges and kinks.52,53 These pre-existing adatoms
have also been found to participate in metal organic
coordination networks.54−59 There is a growing body of
evidence that adatoms can be created in the process of on-
surface reactions.24,49,59−63 Quantifying the extent to which
adatoms and other imperfections of the metal surface influence
the thermodynamics and kinetics of the Ullmann coupling can
inform new strategies for reaction optimization, leading, in
turn, to better defect-free assembly of two-dimensional
polymers.
It has been recently suggested based on results of an STM

and density functional theory (DFT) investigation of the on-
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surface Ullmann coupling reaction that metals atoms bonded
to one iodine and one phenyl fragmentsthe products of the
dehalogenation of an iodobenzene moleculecan be lifted
from their positions and placed on the surface, forming
adatoms.49 The energy required for this extraction has been
calculated to be 0.88, 0.53, and 0.35 eV for Cu(111), Ag(111),
and Au(111) surfacenoticeably lower than the 1.71, 1.12
and 1.15 eV adatom formation energies on surfaces without
organic species.49 It has also been estimated that the reduced
adatom extraction energy can be partially compensated by the
release of energy in the preceding dehalogenation step.49

The role of adatoms has also been investigated for another
step of the Ullmann coupling: the formation of carbon−
metal−carbon bridge structures.64−66 For example, DFT
modeling shows that two fluoranthenyl groups lift their shared
gold atom 2.2 Å above its ideal surface position, which is
noticeably higher than the 0.5 Å height produced by a single
group65 and almost equal to the 2.8 Å interplanar spacing of
Au(111) planes. The lifting of this magnitude suggests that aryl
radicals can in principle shift the lifted atom laterally on the
surface so it can no longer recombine with its vacancy.
However, such a hypothetical aryl-assisted adatom creation has
neither been demonstrated experimentally nor studied
computationally.
In contrast, pre-existing adatoms have been considered in

the case of the formation of the C−M−C bridge from two
triphenylene groups on a Cu(111) surface. The 3.90(25) Å

carbon−carbon distance measured using AFM has been found
to agree more closely with the 3.86 Å distance calculated for a
DFT model with an adatom acting as the bridge rather than
with the 3.42 Å distance calculated for the structure with a
highly lifted ideal surface atom.64 The energy of the formation
of the adatom-containing organometallic bridge has also been
calculated to be 1.74 eV lower than the energy of the formation
of the intermediate on the ideal surface.64

In a study of the C−M−C intermediates formed by two 4-
bromoterphenyl groups on a Cu(111) surface, a comparison of
the degree of molecular twisting in experimental and simulated
AFM images has also indicated that it is an adatom that serves
as the metal bridge.66 Furthermore, an analysis of the ratio of
the two types of organometallic C−M−C intermediates at
different temperatures suggests that adatoms can be created
during the reaction.66

Unfortunately, the role of adatoms in the formation of the
carbon−carbon bond, the final key step of the on-surface
Ullmann coupling, has not been investigated. Although the C−
C bond formation on a gold atom lifted high above the surface
has been studied computationally in the case of bromofluor-
anthene, the investigation focused exclusively on the pathway
where the lifted atom returns to its original crystallographic
position in the surface.65 Despite the emerging evidence of
adatoms being a part of some of the organometallic bridge
structures,64,66 it remains unclear whether surface atoms can be
extracted by two organic groups. Moreover, it is unknown

Figure 1. Energy profile of the Ullmann reaction of monohalogentated benzenes on Cu(111). In the pictograms, the yellow background marks
transition states; blue, red, and green shapes denote copper atoms, halogen atoms, and phenyl groups, respectively. Energy levels shown with black
are states with bromine as the halogen, whereas the gray upper and lower levels denote states with chlorine and iodine as the halogen, respectively.
It is assumed that halogen atoms do not influence the reaction after the dehalogenation step (but see refs 70−72), and therefore, only the energy
levels for bromine containing species are shown (see Tables S1, S3, and S4 for all numerical values). The following abbreviations are used to denote
states. SURF surface and gas-phase molecules, PHYS one precursor molecule is physisorbed, DHAL one molecule is dehalogenated, DHAL-2 two
molecules are dehalogenated, CMC carbon−metal−carbon bridge intermediate, DIM biphenyl product, X-DIM-A biphenyl product adsorbed on
adatom, X-DIM-B biphenyl product adsorbed on the surface, DSRB biphenyl is desorbed, PROD all products are desorbed. The X prefix in all
abbreviations denotes an eXtracted adatom.
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whether the extracted adatoms can be left behind on the
surface, uncoordinated to any groups, after the carbon−carbon
bond is formed.
In order to answer these questions, this work examines, for

the first time, the energetics of the adatom creation during the
on-surface coupling of two phenyl groups using DFT
modeling. Furthermore, previously unexplored effects of
adatoms, extracted and pre-existing, on the carbon−carbon
bond formation between two phenyl groups are investigated in
detail. The phenyl group, which is produced in the
dehalogenation of monosubstituted benzenes, is chosen in
this work as the simplest and most studied representative of
aromatic building blocks used in on-surface synthesis of carbon
nanomaterials. The energetics of all steps of the Ullmann
reaction is compared for three different metals (Cu, Ag, Au)
and three halogens (Cl, Br, I) but the main focus of this work
is on the formation of a C−C bond.
Slab models were employed to represent metal surfaces.

DFT calculations were performed using the dispersion-
corrected67,68 Perdew−Burke−Ernzerhof69 functional (see
Computational Methods for details). The coupling reaction
on the Cu(111) surface is discussed in detail first. Coupling on
the Ag(111) and Au(111) surfaces is considered in
comparison with the Cu(111) surface next.
Ullmann coupling on Cu(111). In the initial steps of the

Ullmann reaction (Figure 1) the halogenated benzene
molecules, physisorbed on the metal surface (PHYS),
dissociate forming the surface-bound phenyl groups
(DHAL), which then combine forming organometallic C−
M−C bridge structures (CMC). The calculated energy profiles
of these steps for three halogens (Figures 1 and S1−S3 and

Table S1) are in qualitative agreement with the trends in the
experimentally measured onset temperatures of dehalogenation
(Table S2)35,70,73 and with the previous calculations on
this32,74 and similar systems.
Two pathways to create the C−C bond are considered here.

In the first pathway, the bridge Cu atom in CMC returns to its
original position after the C−C bond is formed. This pathway
is referred to as the ideal-surface pathway. In the second
pathway, the Cu atom is pulled out to become an adatom,
leaving a vacancy in its original position. This pathway is called
the adatom pathway.
The C−C bond formation along the ideal-surface path is so

exothermic (−2.00 eV) that it can be considered irreversible at
the typical temperatures of the Ullmann coupling of phenyl
groups on copper (350 K) .27,73 The energies of the initial
(CMC), transition (DIM‡) and final states (DIM, for
biphenyl) along the ideal-surface pathway are shown in Figure
1 whereas their structures and the nudged elastic band (NEB)
energy profile are presented in Figure 2. Figure 2 and Table S3
show that, in this pathway, the bridge cooper atom returns
back to its position isochronously with the C−C bond
formation. The ideal-surface path has a relatively small 0.49
eV energy barrier, in agreement with previous calculations
(Table S3) .74,75 It should be pointed out that the relative
barrier heights for the dehalogenation and C−C bond
formation steps calculated in this and previous works74,75 are
inconsistent with the experimentally measured onset temper-
atures (Table S2). Although the origin of this disagreement
remains unclear (see the Supporting Information), the results
of this work, which focuses on the C−C bond formation step,
are not expected to be affected substantially.

Figure 2. Coupling of the phenyl groups along the ideal-surface (black) and adatom (red) pathways. (a) Nudged elastic band (NEB) energy
profiles along the reaction coordinate represented by the distance between the two carbon atoms. For the Cu(111) surface, the geometry of key
intermediates is shown along the (b) ideal-surface and (c) adatom pathways.
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The adatom pathway consists of three elementary steps: the
adatom extraction with assistance of phenyls, the C−C bond
formation on the adatom, and the diffusion of biphenyl away
from the adatom.
Among several alternative adatom pathways (see Supporting

Information), the extraction along the [ ̅]112 high-symmetry
surface direction (Figure 2) has the lowest energy barrier and
will be considered further.
The barrier of the extraction of a Cu atom bonded to two

phenyl groups (0.71 eV, CMC to X-CMC) is substantially
lower than the 2.04 eV energy required to form an adatom
without the assistance of phenyl groups (green pathway in
Figure 1). The decreased barrier height is due to the stronger
binding of the phenyl groups to the Cu adatom (Figure 3a, also
note the 0.12 Å shortening of the carbon−metal bond from
CMC to X-CMC in Table S4). Remarkably, the adatom
extraction assisted by two phenyl groups requires less energy
(0.16 eV) than the previously described extraction assisted by a
single phenyl group and a halogen atom (0.88 eV) .49

With the permissive energetics of adatom extraction, it is
important to look closely into the formation of the C−C bond
catalyzed by the adatom. The energy released along this step
(X-CMC to X-DIM-A) is moderate −0.48 eV (cf. − 2.00 eV
on the ideal surface from CMC to DIM) while the barrier
height (from X-CMC to X-DIM‡) is prohibitive 1.78 eV (cf.
0.49 eV i.e. CMC to DIM‡). This difference between the ideal-
surface and adatom pathways can be attributed to the strong
bonds between the phenyl groups and adatom. The cleavage of
these bonds hinders the C−C bond formation as much as their
formation facilitates the extraction step.
It is worth noting that the adatom pathway can also be

viewed as a sum of two different steps: the exothermic ideal-
surface C−C bond formation (−2.00 eV) and the energy-
demanding unassisted adatom formation (1.76 eV). The entire
pathway is, therefore, nearly thermoneutral (−0.24 eV).
Interestingly, all three steps along the adatom pathway
extraction, C−C bond formation, and the biphenyl diffusion
are also almost thermoneutral and have their own energy
balancing mechanisms (Figure 1). In the first step, the adatom
escapes the pull of its metal neighbors with the compensating
strengthening of the two phenyl−adatom bonds. In the second
step, the two strong carbon−adatom bonds are converted into
one equally strong C−C bond, without a significant release of
energy. Finally, the biphenyl drifts away from the adatom
without experiencing a strong resisting force. Despite the

permissive thermodynamics, however, the high energy of the
state renders the biphenyl formation through the adatom
pathway unlikely. Moreover, despite the ease of the phenyl-
assisted adatom extraction, the organometallic bridges
containing extracted adatoms (X-CMC) are unlikely to be
observed in STM or AFM experiments. This is because the
competing C−C bond formation on the ideal surface has a low
barrier and produces the equilibrium mixture heavily
dominated by biphenyl molecules (DIM).
Coupling on Pre-existing Cu Adatoms. We also examined the

Ullmann coupling catalyzed by the adatoms that are not
extracted during the reaction but already exist on the Cu(111)
surface. Such pre-existing adatoms are known to form on Cu
surfaces due to thermal fluctuations around various defects
such as terrace edges and kinks.48

Figure 4 shows the strong synergistic binding of two phenyl
groups to a pre-existing Cu adatom. While the first phenyl is

coordinated to a Cu adatom with the energy release of 0.49 eV
(X-DHAL-2 to X-SING), binding of the second phenyl is
accompanied by the release of additional 0.95 eV (X-SING to
X-CMC). On Cu(111), the system system becomes trapped in
the X-CMC state. On one hand, the C−C bond formation
cannot proceed because of the height of the X-DIM‡ barrier
(1.78 eV). On the other hand, the reverse dissociation of the
strong adatom−phenyl bond also requires at least 0.95 eV of
energy. Because of such X-CMC traps, the presence of
adatoms during the Ullmann polymerization on Cu(111)

Figure 3. (a) Strength of the interaction energy between the two phenyl groups and the surface, measured as the change from the CMC state. (b)
Dependence between the decreased catalytic activity of adatoms and strengthening of the phenyl-adatom binding. In both axis labels, Δ refers to
the change from the ideal surface to adatom. The linear trendline enforced to go through the origin is y = 0.898x (R2 = 0.950).

Figure 4. Energy profiles of the Ullmann reaction of bromobenzene
on pre-existing adatoms on Cu(111) and Au(111) surfaces.
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surface is more likely to lead to defects in assembled
nanostructures than to be the dominant mechanism of the
Ullmann coupling.
Ullmann Reaction on Ag(111) and Au(111). Energy profiles

of the Ullmann reaction on the ideal Ag(111) and Au(111)
surfaces were calculated for bromobenzene (Figures 5 and 6).
The energy barriers of the debromination step (i.e., formation
of DHAL) increase from Cu (0.89 eV) to Ag (1.20 eV) and to
Au (1.46 eV) in agreement with the trend in the
experimentally measured dehalogenation temperatures35,70,73

(Table S2) and with previous calculations.74 At the same time,
the energy barriers of the C−C formation step (CMC to
DIM‡, Figure 2a, Table S3) follow a different trend decreasing
from Ag (0.62 eV) to Cu (0.49 eV) and to Au (0.14 eV), again

in agreement with experimental (Table S2) and previously
reported DFT74 trends. The adatom pathways on Ag(111) and
Au(111) exhibit several interesting features not seen for
Cu(111).
First, the phenyl-assisted adatom extraction on Ag(111)

surface has a lower activation energy (0.43 eV from CMC to X-
CMC‡) and thus proceeds faster than the conventional ideal-
surface C−C bond formation (0.62 eV from CMC to DIM‡),
in contrast to the Cu-mediated processes (Figure 2a).
However, despite the fast formation of the phenyl-bonded
adatoms on Ag(111), the fate of these species is the same as
those on Cu(111): silver adatoms quickly recombine with their
vacancies and the biphenyl formation occurs along the
conventional ideal-surface pathway, which has a lower

Figure 5. Energy profile of the Ullmann reaction of bromobenzene on Ag(111). Color coding and abbreviations are the same as in Figure 1.

Figure 6. Energy profile of the Ullmann reaction of bromobenzene on Au(111). Color coding and abbreviations are the same as in Figure 1.
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activation barrier (0.62 eV from CMC to DIM‡) than that of
adatom-catalyzed coupling (1.52 eV from X-CMC to X-
DIM‡).
Second, the barrier of the adatom-catalyzed C−C formation

on Au (0.20 eV X-CMC to X-DIM‡, Figure 6) is dramatically
lower than those for Ag (1.52 eV) and Cu (1.78 eV) (Figure
2a). However, when the additional 0.36 eV barrier of the Au
atom extraction is taken into account, it is clear that the
transformation along the adatom pathway is significantly
slower than the rapid C−C bond formation on the ideal
surface with its 0.14 eV activation energy. Since the extraction
barrier is eliminated for pre-existing Au adatoms, they are
expected to catalyze the C−C bond formation almost as
efficiently as ideal-surface atoms, without forming the X-CMC
traps like Cu adatoms76 (Figure 4).
To summarize, the calculations show that adatoms on all

three surfaces have decreased ability to catalyze the C−C bond
formation compared to metal atoms of the ideal surfaces. The
key reason behind the decreased catalytic activity is the
strengthening of the phenyl-metal binding as demonstrated by
the nearly linear dependence between the two properties in
Figure 3b.
Implications for Adatom Catalysis. The results of this work

raise a tantalizing question whether it is at all possible to find a
metal surface capable of catalyzing the Ullmann coupling
through an adatom pathway that is faster than the conventional
ideal-surface mechanism. The DFT data reveals that the
strengthening of the phenyl−adatom binding relative to the
phenyl-surface binding (Figure 3) is the main parameter that
determines the efficiency of both the extraction and adatom-
catalyzed C−C bond formation steps (Figure 3b). The
example of Au(111) demonstrates that low strengthening
leads to weak extraction assistance. On the other hand, the
examples of Ag(111) and Cu(111) show that high
strengthening may facilitate the extraction but prohibits the
second C−C bond formation step. It is reasonable to expect,
however, that the phenyl-assisted extraction can be facilitated
without hindering the adatom catalyzed C−C bond formation
if metal catalysts with lower energy of unassisted adatom
extraction are employed. It can be speculated that alloys of
copper, silver, and gold with different ratios of components can
satisfy this requirement because lattice inequalities may make
atom extraction easier.
To conclude, the role of adatoms in the coupling of iodo-,

bromo-, and chlorobenzene on Cu(111), Ag(111), and
Au(111) surfaces was investigated using DFT modeling. For
all three metals, the energy of the phenyl-assisted adatom
extraction was found to be significantly lower than the energy
of the unassisted adatom creation. In the most dramatic
example, Cu(111), the two energies are 0.16 and 1.76 eV,
respectively. In the case of the phenyl-assisted metal atom
extraction, the energy cost of breaking metal−metal bonds is
almost completely offset by the increased binding of the phenyl
groups to the extracted metal atom. This effect is also
responsible for the low phenyl-assisted extraction barriers
computed for all three metals (0.71 eV Cu, 0.43 eV Ag, 0.36 eV
Au).
Quantifying the strengthening of phenyl−adatom bonds for

all three metals revealed its strong correlation with the
increased activation barrier of the C−C bond formation on
adatoms. In the case of Cu(111) and Ag(111), the adatom-
catalyzed C−C bond formation barriers are found to be
extremely high (1.78 eV Cu, 1.52 eV Ag) rendering this

adatom-based catalytic mechanism uncompetitive despite the
ease of the phenyl-assisted adatom extraction. In stark contrast
to Cu and Ag, the C−C bond formation barrier on Au adatoms
is only 0.20 eV. Nevertheless, the adatom catalysis on Au is still
slower than the ideal-surface catalysis because it is the
extraction step that hinders it in this case.
DFT is used to predict the behavior of not only the phenyl-

extracted adatoms but also the adatoms that already exist on
metal surfaces, for example, around steps and kinks. On
Cu(111) and Ag(111), pre-existing adatoms bind phenyl
groups so strongly that they are unable to catalyze the
subsequent C−C bond formation. Without the possibility to
recombine with a vacancy, these organometallic adatom states
form low-energy traps. In contrast, pre-existing Au adatoms are
not expected to form such traps as they catalyze the C−C bond
formation almost as efficiently as ideal-surface atoms. This may
explain why the Ullmann polymerization on Au(111) can
produce fewer defects in surface-assembled nanostructures
than the same process on Ag(111) and Cu(111) .76

This work has important implications. The systematic
comparison of the reaction energetics on ideal surfaces and
adatoms allows rational predictions to be made about the
influence of other defects, such as terrace edges and kinks, on
the Ullmann coupling reactions, facilitating investigation of
their mechanisms. The systematic DFT data can also advance
design of effective adatom catalysts for a variety of on-surface
reactions. One strategy to design adatom catalyzed reactions is
to focus on metals with low adatom-vacancy formation
energies while a complementary strategy would be to find
reactants that bind to adatoms and surface atoms equally
strongly.

■ COMPUTATIONAL METHODS
The (111) metal surfaces were modeled with slabs containing
192 metal atoms arranged in four 8 × 6 atomic layers. A 10 Å
portion of vacuum was added in the direction normal to the
surface to ensure weak interaction between periodic images of
the slab. The size of the slabs in the lateral directions was 20.55
× 13.35 Å for Cu, 22.84 × 14.82 Å for Ag, and 22.47 × 14.60 Å
for Au. When pre-existing atoms are considered, it is assumed
that the presence of the vacancy does not affect the state
energetics drastically and, therefore, the vacancy-containing
models are reused to model pre-existing adatoms.
DFT calculations were performed using the Vienna ab initio

simulation package (VASP) .77−80 The dispersion-cor-
rected67,68 Perdew−Burke−Ernzerhof (PBE) generalized gra-
dient approximation69 was used as the exchange-correlation
functional. Spin-polarized electronic states were modeled using
a plane wave basis set with the energy cutoff set at 800 eV. The
projector augmented wave formalism was used to describe
interactions of atomic cores with valence electrons. The
integration over the Brillouin zone was performed using the 3
× 3 × 1 Monkhorst−Pack k-point mesh.
Atomic positions were optimized until the maximum force

on atoms decreased below 0.02 eV Å−1. Transition state
structures were located using the climbing-image nudged
elastic band (NEB) with the VTST code.81 In NEB
calculations, an improved initial guess82,83 for the minimum
energy path was used, and the positions of atoms were relaxed
until the maximum force dropped below 0.1 eV Å−1.
The role of entropy in the on-surface reactions was

investigated using the model of mobile rigid adsorbates84

described in the Supporting Information. Figures S6 and S7
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show that for commonly used experimental conditions (i.e.,
temperature and surface coverage), the entropy effects do not
play a significant role in all adatom extraction and C−C bond
formation elementary steps considered in this work.
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