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ABSTRACT: The key idea of the variable-metric approach to
orbital localization is to allow nonorthogonality between orbitals
while, at the same time, preventing them from becoming linearly
dependent. The variable-metric localization has been shown to
improve the locality of occupied nonorthogonal orbitals relative to
their orthogonal counterparts. In this work, numerous localization
algorithms are designed and tested to exploit the conceptual
simplicity of the variable-metric approach with the goal of creating
a straightforward and reliable localization procedure for virtual
orbitals. The implemented algorithms include the steepest descent,
conjugate gradient (CG), limited-memory Broyden−Fletcher−
Goldfarb−Shanno (L-BFGS), and hybrid procedures as well as
trust-region (TR) methods based on the CG and Cauchy-point subproblem solvers. Comparative analysis shows that the CG-based
TR algorithm is the best overall method to obtain nonorthogonal localized molecular orbitals (NLMOs), occupied or virtual. The L-
BFGS and CG algorithms can also be used to obtain NLMOs reliably but often at higher computational cost. Extensive tests
demonstrate that the implemented methods allow us to obtain well-localized Boys−Foster (i.e., maximally localized Wannier
functions) and Pipek−Mezey, orthogonal and nonorthogonal, and occupied and virtual orbitals for a variety of gas-phase molecules
and periodic materials. The tests also show that virtual NLMOs, which have not been described before, are, on average, 13% (Boys−
Foster) and 18% (Pipek−Mezey) more localized than their orthogonal counterparts.

I. INTRODUCTION

Spatially localized orbitals are widely used in the electronic
structure theory. Occupied localized orbitals help to describe,
visualize, and classify chemical bonding between atoms, thus
facilitating our understanding of electronic-structure origins of
observed properties of atomistic systems.1−13 Occupied and
virtual localized orbitals are crucial ingredients in all local
electronic structure methods including Kohn−Sham density
functional theory (DFT)14−26 and wavefunction-based electron
correlation methods.23,27−37 In these methods, it is the locality
of one-electron orbitals that allows us to dramatically reduce the
computational cost of modeling of large systems.24,38,39 Because
of the importance of localized orbitals in electronic structure
theory, such orbitals have been generated using many
conceptually different approaches.24,31,32,40 The focus of this
work is on localized orbitals obtained through the optimization
of a localization functional.40

The self-consistent field procedure at the heart of Kohn−
Sham DFT and most single-reference electronic structure
theories yield spatially delocalized one-electron states. Typically,
these states are the eigenstates of the effective one-electron
Hamiltonian and are known as canonical molecular orbitals
(CMOs) in the case of molecules and Bloch orbitals in the case
of periodic systems. Here, they will be collectively referred to as
CMOs. Traditionally, spatially localized orbitals are constructed
by finding the unitary transformation of CMOs that minimizes

the spread of individual orbitals. The unitary transformation can
be applied to the set of occupied orbitals, generating a localized
description of chemical bonding, or to the set of virtual orbitals,
producing local anti-bonding orbitals.
Multiple functionals have been proposed to measure orbital

locality in molecular systems. The most known are Boys−
Foster,1 Edmiston−Ruedenberg,2,41,42 Pipek−Mezey,5 and Von
Niessen6 functionals. The Boys−Foster localization functional is
perhaps themost popular because of the simplicity of its physical
interpretation such as the orbital spread, low computational
complexity, and ease of implementation. The Pipek−Mezey
localization,5 which maximizes atomic charges43−45 of each
orbital, is also widely used because it does not mix localized
molecular orbitals (LMOs) representing σ and π bonds and thus
gives a clear picture of bonding patterns. In the last decade, these
well-established localization functionals have been modified to
reduce orbital tails and produce more uniform localization
across a set of orbitals,46−50 especially virtual LMOs.46,47
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For periodic systems, maximally localized Wannier functions
(MLWFs)51,52 represent the solid-state equivalent of Boys−
Foster orbitals. For large supercells of condensed phase-periodic
systems, where electronic structure can be described with the Γ-
point sampling of the Brillouin zone, generalized Pipek−Mezey
Wannier functions have also been proposed.53 In this work,
Wannier functions and LMOs will be referred to as LMOs
regardless of whether the system is isolated or treated with
periodic boundary conditions.
Since CMOs are orthogonal and a unitary transformation

applied to them during a localization procedure preserves the
orbital metric, LMOs obtained in this way are orthogonal by
construction. Because of the imposed orthogonality condition,
orthogonal LMOs (OLMOs) exhibit small non-zero values even
far away from their localization centers. These orthogonalization
tails reduce orbital locality making orbital-based local
correlation methods less computationally efficient. They also
complicate the interpretation of chemically relevant electronic-
structure information and make its transferability from one
system to another more difficult. It is, however, known that the
orthogonality of one-electron orbitals, while often mathemati-
cally convenient, is not a strict requirement in electronic
structure theory where many methods have been reformulated
in terms of nonorthogonal orbitals.54

To mitigate the undesirable orthogonality effects, metric-
preserving unitary transformation has been applied to non-
orthogonal orbitals55 and, in a more dramatic procedure, the
unitary localization transformations have been replaced with
more general variable-metric nonsingular transformations.56−63

In the latter procedure, the generalization lifts the orthogonality
constraint imposed on LMOs and increases the number of
degrees of freedom available to LMOs. It has been found that
occupied nonorthogonal LMOs (NLMOs) obtained in a
variable-metric procedure are indeed about 10−30% more
localized than OLMOs if measured by the value of the Boys−
Foster functional.61,63,64

In contrast to metric-preserving unitary transformations, the
variable-metric localization must be formulated to avoid linear
dependencies of orbitals during the minimization of the
localization functional.61,62,64 One approach to overcome the
linear dependence problem is to fix the centers of NLMOs61,62 at
the positions guessed from the knowledge of bonding patterns in
the system62 or at the centers of OLMOs.61 Another more
recent approach is to augment the localization functional with a
term that measures the deviation from the orthogonality and
penalizes the states that are too close to linear dependence.63

The latter reformulation of variable-metric localization allows
not only to determine optimal positions of the NLMOs’ centers
in an unconstrained and straightforward minimization proce-
dure but also to choose the desired balance between the
orthogonality and locality of the orbitals.
A variety of iterative algorithms have been developed to

minimize localization functionals and construct LMOs. They are
briefly reviewed below, first for OLMOs and then for NLMOs.
In the case of OLMOs, the orthogonality can be preserved

through the explicit parameterization of unitary transforma-
tions65−67 or through implicit transformation of derivatives into
the unitary manifold.45,50

The Jacobi rotations, a sequence of pairwise unitarymixings of
orbitals, has been introduced in early works2,65 and because of its
simplicity, they have become the standard localization method
for occupied OLMOs. Unfortunately, the Jacobi optimization
fails to converge in the case of virtual orbitals with the exception

of simple molecules and small basis sets. With the recognition of
the utility of parametric representations of unitary trans-
formations50,65−67 and advent of iterative algorithms for
unconstrained optimization of nonlinear functions, multidimen-
sional line search methods that include steepest descent (SD),
conjugate gradient (CG), and Newton and quasi-Newton
algorithms68 have been suggested for orbital optimization. It has
been found that the SD approach is more efficient than Jacobi
transformations for occupied OLMOs.69 CG methods designed
to outperform the SD algorithm have been reported not to
improve the efficiency of the localization procedure signifi-
cantly.70 The limited-memory Broyden−Fletcher−Goldfarb−
Shanno (L-BFGS) algorithm belonging to the family of quasi-
Newton methods has also been implemented to localize
occupied OLMOs.67 It remains unclear whether L-BFGS is
advantageous to simpler CG and SD algorithms. In the
Newton−Raphson localization of occupied OLMOs, the
incorporation of the second-derivative information results in
the acceleration of the convergence in the vicinity of the
minimum where the Hessian is positive-definite.71 However, in
the initial iterations of the Newton−Raphson localization, far
away from the minimum, negative eigenvalues of the Hessian
lead to poorly computed optimization directions and, thereby,
to slow, erratic, or failed convergence.
The major shortcoming of the aforementioned line search

methods is that they often fail to localize orbitals of the virtual
subspace. This failure is attributed to the presence of negative
Hessian eigenvalues that are more ubiquitous for more diffuse
virtual orbitals. To resolve the indefinite Hessian problem, a
trust-region (TR) optimization method employing the level-
shiftedNewton algorithm to solve the fixed-radius subproblem68

has been investigated as an alternative to multidimensional line
search methods. This variant of TR methods has been
demonstrated to work reliably for both occupied and virtual
Hartree−Fock OLMOs40 with the standard and fourth-order
Boys46−48,72 and Pipek−Mezey localization functionals.49,72

There have been fewer studies of localization algorithms for
nonorthogonal orbitals. The trust region method described
above has been generalized and successfully applied to metric-
preserving nonorthogonal occupied and virtual orbitals.55 As to
the more flexible variable-metric localization, it has been limited
to occupied NLMOs and has successfully utilized multidimen-
sional line search methods such as conjugated gradient,63,64 the
Gill−Murray variant of the Newton method,61 and BFGS
method.62

For periodic systems, the SD51,52 and CG53,63,66 algorithms
have been used to construct occupied OLMOs51−53,66 and
NLNOs63 using Boys (i.e., MLWFs)51,63,66 and Pipek−
Mezey53,63,66 localization criteria.
This work focuses on NLMOs. The ability of the recently

introduced variable-metric approach63 to optimize NLMO
mixing coefficients directly is exploited to design and compare
numerous localization algorithms. It is demonstrated that
several multidimensional line search and TR algorithms are
robust and capable of extending variable-metric localization to
virtual NLMOs, which have not been described before.
Furthermore, the locality of occupied and virtual NLNOs
obtained using Boys and Pipek−Mezey criteria for isolated and
periodic systems is compared to that of their orthogonal
counterparts.
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II. THEORY
Conventional tensor notation is used to manipulate non-
orthogonal orbitals.54 Covariant quantities are denoted with
subscripts, and contravariant quantities are denoted with
superscripts. A summation is implied over the same covariant
and contravariant orbital indices. Summation is not implied if
two indices are both covariant or if indices do not refer to
orbitals. Since the localization is performed separately for
occupied and virtual orbitals, the implied summation runs over
either occupied or virtual orbitals, not all orbitals of the system.
All equations written in the standard matrix notation can be
found in Supporting Information.
In order to obtain a set of NLMOs, which tend to be more

localized than OLMOs, the orthogonality constraint is replaced
with the weaker normalization constraint. Thus, the coefficients
in the linear expansion of NLMOs |j⟩ in terms of the initial one-
electron states |i0⟩

=j i Ai
j0 (1)

are not required to form a unitary matrix. The normalization
constraint is imposed on NLMOs by expressing the coefficients
in terms of independent optimization parameters denoted with
lowercase a

σ= ≡−A a a a a N( )i
j

i
j

k
j kl

l
j

i
j j

0 1
2 (2)

where Nj is the a-dependent normalization coefficient defined
for brevity. Here and below, σ0 and σ denote overlap matrices of
the initial orbitals and NLMOs

σ

σ σ

=

= =

j i

k l A A

ji

kl
j
k ji

i
l

0
0 0

0
(3)

Note that the initial one-electron states are not required to be
canonical or orthogonal but need to be normalized and linearly
independent.
Without the orthogonality constraint, a conventional local-

ization functionalΩL must be augmented by a penalty functional
ΩP that prevents NLMOs from becoming linearly dependent
during the optimization63

Ω = Ω + ΩcA A A( ) ( ) ( )L P P (4)

where cP > 0 is the penalty strength. Although many penalty
functionals can be envisioned, it has been found that

σΩ = − [ ]A A( ) ln det ( )P (5)

works well with a variety of optimization algorithms. In eq 5, the
dependence of the NLMO overlap matrix on the mixing
coefficients is shown explicitly.
Since NLMOs remain normalized in the optimization

procedure, the determinant of σ lies in the (0, 1] interval. It is
1 for orthogonal NLMOs and 0 for linearly dependent NLMOs.
Consequently, the penalty functional between 0 and +∞ for
these two extreme cases, respectively, makes the linearly
dependent state inaccessible in the localization procedure with
finite penalty strength cP.
Without the orthogonality constraints, there are twice as

many independent localization degrees of freedom in the
variable-metric procedure as in the metric-preserving approach.
These additional degrees of freedom are important for
producing more localized occupied orbitals.61,63,64 As has been
shown previously,63 these degrees of freedom can be handled

efficiently during the unconstrained optimization procedure and
the single-value penalty term plays the key role in avoiding
linearly dependent states during the localization. It is this
simplicity that makes the variable-metric approach described
here straightforward to implement and use.
It is convenient to write the penalty strength cP as a product of

a dimensionless parameter α and the initial value of the
localization functional

α= Ωc I( )P L (6)

This factorization makes units of the localization and penalty
terms consistent. The value of αmust be optimized to achieve a
desirable compromise between orbital locality and linear
independence. A simple strategy to determine α is to set it
initially to a sufficiently large value and then gradually decrease it
until the determinant of the overlap of NLMOs drops below a
desired threshold Dtar ∈ (0, 1]. It has been found63 that the
initial value

α σ=
−i

k
jjjjj

y
{
zzzzzD

I
ln

det ( )init

tar

1

(7)

is sufficiently large to ensure linear independence of NLMOs
during the first crucial steps of the localization but, at the same
time, is not significantly larger than its optimal value.
The localization functionals adopted in this work can be

written as

∑ ∑ ωΩ = −

= ̂ =

z

z A m B n A A B A

A( ) (1 ),
K i

K i
K

i
K m

i
K n

i
m

i mn
K n

i

L
2

0 0 (8)

with index i referring to NLMOs and other variables having
different meaning depending on the localization method.
The Berghold66 localization functionalΩL

B is equivalent to the
Boys−Foster localization scheme66,73 for the gas-phase system.
For periodic systems, the Berghold functional is a generalization
of the Resta functional73,74 to three dimensions and simulation
cells of general shape and symmetry. It is suitable for the Γ-
point-only description of electronic states.

̂ = · ̂B eK iG rK (9)

where r ̂ is the position operator in three dimensions, ωK and GK
are suitable sets of weights and reciprocal lattice vectors,
respectively, labeled by index K.66,75

In the Pipek−Mezey5,45 localization functional ΩL
PM

∑ χ χ χ χ̂ = | ⟩ | + | ⟨ |
μ

μ
μ μ

μ
∈

B
1
2

( )K

K (10)

zi
K is the contribution of orbital i to the Mulliken charge of atom
K, |χμ⟩ and |χμ⟩ are atom-centered covariant and contravariant
basis set functions, atomic weights ωK are all set to one, and the
imaginary part of zi

K is zero.66,75 The summation over μ is written
explicitly to emphasize that it is restricted to the basis functions
centered on atom K.
The unconstrained minimization of functional Ω can be

carried out with a variety of algorithms, all of which require the
first derivative with respect to the independent parameters (i.e.,
the gradient) and some of which can benefit from exact or
approximate second derivatives (i.e., the Hessian).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00379
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

C

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.1c00379/suppl_file/ct1c00379_si_001.pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00379?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


The gradient ≡ ∂Ω
∂

Gi
j

ai
j
is a sum of the localization ≡ ∂Ω

∂
Li

j
ai

j

L

and penalty ≡ ∂Ω
∂

Pi
j

ai
j

P components

= +G L c Pi
j

i
j

i
j

P (11)

These components can be readily expressed in terms of the
derivatives with respect to the transformation coefficients

̃ ≡ ∂Ω
∂

Xk
l

A
X

k
l

= ̃ ∂
∂

= ̃ − ̃
Ä
Ç
ÅÅÅÅÅ

É
Ö
ÑÑÑÑÑX X

A
a

X A A X N( )i
j

k
l

k
l

i
j

i
j

ij
m

j m
j

j
(12)

where X is either L or P and covariant coefficients arise from
their contravariant-covariant counterparts Aij = σin

0An
j. To clarify

the tensor notation, the summation is not implied over j in the
equation above because this index appears in the left-hand side
of the equation (see also equations in the standard matrix
notation in Supporting Information). The same convention is
used in the equations below.

ω̃ = −∑ ×
×[ + ]

L

B A z B A z

4

Re( ) Re( ) Im( ) Im( )
k

l
K K

kn
K n

l l
K

kn
K n

l l
K

(13)

σ σ̃ = − = −P A A2 2k
l

km
m

n
nl

k
l0

(14)

The equation above defines covariant-contravariant coef-
ficients Ak

l. Note that the penalty term ensures that the overlap
matrix remains not only invertible but also well-conditioned.
Thus, elements of its inverse σnl can be computed efficiently.

The Hessian ≡ ∂ Ω
∂ ∂

His
jt

a ai
j

s
t

2

is also a sum of the localization

̅ ≡ ∂ Ω
∂ ∂

Lis
jt

a a
L

i
j

s
t

2

and penalty ̅ ≡ ∂ Ω
∂ ∂

Pis
jt

a a
P

i
j

s
t

2

components

= ̅ + ̅H L c Pis
jt

is
jt

is
jt

P (15)

These components can be expressed in terms of the second
derivatives with respect to the transformation coefficients

̅ ≡
∼ ∂ Ω

∂ ∂
X kx

ly

A A
X

k
l

x
y

2

and in terms of the first-derivative X̃k
l defined

above. Here, X stands for either L or P.

δ σ

̅ = ̅
∂
∂

∂
∂

+ ̃ ∂
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= [ ̅ − ̅ − ̅

+ ̅ ]
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∼

∼ ∼ ∼
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X X
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( )(3 )

is
jt

kx

ly k
l

i
j

x
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s
t

k
l

k
l

i
j

s
t

is

jt

ix

jt
x

t st xs

jt
x
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k
j kx

jt
x

t ij st j t

jt k
t k

t it st is

i
t

st
t

it t

2

0

2
(16)

∑ ω δ̅ = − ×

[ + +

+ ]

∼
L

B z B A B A

B z B A B A

4

Re( )Re( ) 2Re( ) Re( )

Im( )Im( ) 2Im( ) Im( )

kx

jt

K
K jt

kx
K

t
K

kn
K n

t xq
K q

t

kx
K

t
K

kn
K n

t xq
K q

t (17)

̅ =
∼
P A A2kx

jt

k
t

x
j

(18)

III. COMPUTATIONAL METHODS
III.A. Multidimensional Line Search Methods. Multi-

dimensional line search algorithms are the most popular
methods to minimize a function of D independent variables.
This large family of algorithms includes the SD, CG, and quasi-
Newton methods. In these algorithms, the search direction d in
D dimensions is determined first. The objective function, also
known as the loss function, is then minimized along the chosen
direction using a simple one-dimensional search algorithm to
obtain the optimal step size γ*. Using the variables of the
previous section, an iteration in a multidimensional line search
localization procedure is defined by

γ γ

γ

* = Ω +
= + *

γ

+

a d

a a d

argmin ( )k k

k k k1 (19)

where boldface a and d denote vectorized forms of the
independently varied parameters and search direction, respec-
tively. The vectorized form is introduced to adapt the tensor
notation of the previous section to the vector notation
commonly employed in the field of numerical optimization. In
the latter notation, the independent variables and gradients are
denoted as vectors, whereas the second derivatives are treated as
matrices. In the previous section of this work, the independent
variable and gradient are two-index tensors, and the second
derivative is a four-index tensor. Vectorization simply replaces
double indices with a single collective index

=

=

a

H

a

H

( )

( )

Z i
j

ZY is
jt

(20)

In the equation above, the range of the capitalized indices is
equal to the number of independently varied parameters, that is,
the square of the number of the orbitals being localized.
Multidimensional line search algorithms differ by how the

search direction is computed. The SD, CG, L-BFGS, and CG-
BFGS hybrid76 are considered in this work.
For SD and CG, the search direction takes the following form

β

β

β β

= − +

=

=
⟨ ⟩

⟨ ⟩
=

+ +

+ +

d G d

G G
G G

0,

,
,

, 0

k k k k

k

k
k k

k k

1 1

SD

CG(FR) 1 1
0
CG(FR)

(21)

where G is the vectorized form of the gradient matrix defined in
eq 11 and CG(FR) stands for the Fletcher−Reeves choice77 for
the update factor β. Note that a tensorially consistent inner
product is defined for vectorized tensors

σ σ σ σ⟨ ⟩ = = =K T K T K TK T, km n
m nl

l
k

n
m n

m
km n

m nl
l
k0

0
(22)

In the L-BFGS method, the search direction is determined by
contracting an approximate inverted Hessian B−1 with the
gradient

ρ ρ ρ

ρ

= −

= − − +

=
⟨ ⟩

+ +
−

+

+
− −

d B G

B I s y B I y s s s

y s

( ) ( )

1
,

k k k

k k k k
T

k k k k
T

k k k
T

k
k k

1
BFGS

1
1

1

1
1 1

(23)
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where yk = Gk+1 − Gk and sk = ak+1 − ak. Note that the L-BFGS
algorithm does not explicitly compute the Hessian nor the
inverted Hessian. It only computes the contraction of the
approximate inverted Hessian with the gradient. Obviating the
need in the Hessian inversion makes L-BFGS a promising
candidate for efficient orbital localization.
The hybrid CG-BFGS method76 has been designed to

combine advantages of BFGS and CG methods. It has been
shown to reduce the total number of iterations to convergence76

and is considered here as an alternative to the L-BFGS
algorithm.

β

β β

β β β

β

= − − +

= −
⟨ ⟩
⟨ ⟩

= −
⟨ ⟩

⟨ ⟩

= { { }}

= +
⟨ ⟩

⟨ ⟩

+
‐

+
−

+ + + +
‐

+
+

+
+ +

+ + +

+ +
+

+ +

l

l

d B G G d

y G

G d
G G

G d

G d
G G

,

,

,
,

,
,

max 0, min ,

1
,

,

k k k k k k k

k
k k

k k
k

k k

k k

k k k

k k
k k

k k

1
CG BFGS

1
1

1 1 1 1
LSCD CG BFGS

1
LS 1

1
CD 1 1

1
LSCD

1
LS

1
CD

1 1
LSCD 1

1 1

(24)

III.B. TR Methods. In contrast to the line search methods
described above, the TR methods determine the search
direction and one-dimensional step size simultaneously. At
each TR iteration, the subproblem

= Ω + ⟨ ⟩ + ⟨ ⟩

⟨ ⟩ ≤ Δ

m p a G p p H p

p p

min ( ) ( ) ,
1
2

,

subject to ,

p
k k k k

k
2

(25)

is solved to suggest an update pk to the current values of
independent variables ak. Here,Δk denotes the trust radius. If the
update is judged acceptable, ak is updated

= ++a a pk k k1 (26)

Otherwise, ak values remain unchanged and the trust radius
Δk is reduced to produce a new subproblem that is solved in the
next iteration. The TR algorithm for updating ak andΔk is based
on comparing the actual reduction in the loss function to the
reduction predicted by the model quadratic function mk(p).
This algorithm is well-established68 and various TR methods
differ by how the model function is defined and how the
subproblem is solved.
In this work, the model quadratic function in eq 25 is

expressed in terms of the exact analytical gradient and Hessian
given by eqs 11 and 15, respectively. The performance of two
subproblem solvers is investigated.
The Cauchy-point subproblem solver minimizes the model

function along the gradient within the TR bounds68
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where Γi
j = σ0

inGn
mσmj is the contravariant-covariant version of

the gradient. The first line in eq 28 shows that if the gradient lies
in a direction of a negative curvature, the algorithm steps to the
border of the trust region.

The second subproblem solver relies on the CG algorithm and
is denoted as TR(CG). It has been shown that a sufficiently
precise solution to the quadratic model function can be found
using preconditioned CG algorithm if it is properly modified to
monitor the satisfaction of the TR constraint.78 Its main
advantage over the dogleg methodperhaps the most popular
subproblem solveris the efficient utilization of the second-
derivative information without the need to invert the Hessian.
This enables the application of the TR(CG) method to
problems with indefinite Hessian, which are often encountered
during the localization of virtual orbitals.
It should be emphasized that the computational cost of the

Hessian−vector contraction, required in both TR methods,
grows cubically N( )3 with the number of NLMOs, not
quartically N( )4 as expected from the straightforward
counting of the elements. The scaling is naturally reduced
because the localization function is a sum of single-orbital terms
and, as a result, all the second derivatives with respect to the
mixing coefficients of two different orbitals are zero. This drastic
reduction in the number of non-zero elements in the localization
part of the Hessian matrix is indicated by the Kronecker delta in
eq 17. The penalty part of the Hessian in eq 18 is represented by
an outer product of two vectors, which again results in the
cubically scaling cost of the contraction.

III.C. Computational Details. All localization algorithms
were implemented in the CP2K software package.79 Key
implementation details were described in the previous work.63

NLMOs for multiple systems ranging from a simple water
molecule to complex molecules with non-trivial bonding
patterns and to large periodic systems were constructed. For
all systems, the initial CMOs were obtained using the
conventional diagonalization-based SCF procedure imple-
mented in the electronic structure module of CP2K. The
Becke−Lee−Yang−Parr generalized gradient approxima-
tion80,81 was used as the exchange−correlation functional.
Goedecker−Teter−Hutter pseudopotentials82 were used to-
gether with a triple-ζ atom-centered Gaussian basis set with two
sets of polarization functions (TZV2P) for all atoms. The energy
cutoff was set at 600 Ry to define the auxiliary plane-wave basis
set in the construction of the effective Hamiltonian. The
integration over the Brillouin zone was performed using the Γ-
point approximation. CMOs were used as the initial set of
orbitals, and the initial transformation matrix a was set to be the
identity matrix. It has been verified that the energy of all systems
remains the same within the numerical accuracy of the
calculations (10−12 a.u.) before and after the NLMO
optimization indicating that there is no spurious mixing of
occupied and virtual orbitals during their localization. All
calculations were performed on 40-core nodes containing two
Intel Xeon Gold 6148 Skylake CPUs running at 2.4 GHz.
For graphene, an 8× 8 supercell containing 128 carbon atoms

was used to demonstrate the localization of virtual orbitals and
the 10 × 10 supercell containing 200 carbon atoms was used to
construct occupied localized orbitals.

IV. RESULTS AND DISCUSSION

IV.A. Convergence and Computational Efficiency. The
convergence and computational efficiency of the localization
algorithms were compared for occupied and virtual orbitals in
molecules and periodic solid-state systems. Unless stated
otherwise, the Berghold localization functional was used in
most tests. As a reminder, this functional corresponds to Boys
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localization for isolated systems and produces MLWFs for
periodic systems with large supercells.

As shown in Figure 1, most computational effort of the
localization procedure is devoted to converging the minimiza-

Figure 1. Dependence of the optimal localization functional and determinant of the virtual NLMO overlap on αthe adjustable part of the penalty
strength. The first point on the left is α = (ln 10)−1≈ 0.434. The green bars show the relative number of CG-BFGS iterations to localize orbitals for each
value of α.

Figure 2.Maximum norm of the gradient in the Berghold localization of the occupied orbitals of carborane and graphene. Calculations were performed
using 1 compute core and 200 compute cores, respectively.
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tion procedure for the initial value of the penalty strength α.
After the first set of LMOs is obtained, the re-localization for
weaker penalty strength α is fast in most cases. Taking this fact
into account, the performance of the algorithms is compared
only for the initial value of α.
Figure 2 compares the convergence of the localization

procedure for occupied orbitals of carborane (25 occupied
orbitals) and graphene (400 occupied orbitals)representa-
tives of molecular and solid-state systems. The maximum norm
of the gradient was used as a convergence criterion. The
convergence threshold was set to 10−3 a.u.an excessively tight
value that allows us to check the stability of the algorithms. The
convergence of the simple steepest descend algorithm and the
Cauchy-point TR algorithmthe TR equivalent of SDis
significantly lower than that of more advanced methods even for
the small carborane molecule. For the CG, L-BFGS, and hybrid
CG-BFGS algorithms, the rate of convergence is higher and

mostly constant throughout the optimization. An attractive
feature of the TR algorithm based on the iterative conjugate-
gradient subproblem solver [TR(CG)] is that it tends to
accelerate in the vicinity of the minimum. Unfortunately, the
greatly reduced number of iterations in the TR(CG) algorithm
does not result in the same reduction in computational time
because each TR iteration (i.e., finding the solution to a
subproblem) requires multiple CG iterations. Based on the data
presented in Figure 2 for carborane, CG, BFGS, and hybrid CG-
BFGS and TR(CG) algorithms appear to be reliable and
efficient localization methods for occupied orbitals. Only these
algorithms are considered for the localization of the occupied
orbitals of graphene and all virtual orbitals. The SD and
TR(Cauchy) algorithms are eliminated because of their low
convergence rate.
Figure 3 compares the convergence of the most promising

localization algorithms for virtual orbitals of benzene (172

Figure 3.Maximum norm of the gradient in the Berghold localization of the virtual orbitals of benzene, carborane, and graphene. Calculations were
performed using a single compute core for benzene and carborane. 120 compute cores were used in the case of graphene.
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virtual orbitals), carborane (257 virtual orbitals), and graphene
(2560 virtual orbitals). The convergence of virtual orbitals is
significantly slower compared with occupied orbitals for all
algorithms. Apart from the slower convergence, the relative
performance of the algorithms for virtual NLMOs is similar to
that for occupied NLMOs. The L-BFGS algorithm appears to be
better than the CG algorithm, and the hybrid CG-BFGS
methods can produce benefits by combining the features of both
approaches. However, the CG-BFGS algorithm fails to maintain
its convergence rate near the solution in the case of carborane,
casting doubt on its general superiority. As in the case of
occupied NLMOs, the TR(CG) method requires significantly
fewer iterations to converge but these iterations tend to take
more time. Nevertheless, the TR(CG) algorithm is as efficient as
or even more efficient as the line search methods.
The results for occupied and virtual orbitals show that, among

the line search methods, the hybrid CG-BFGS algorithm has the
best overall performance. TR(CG) is as robust and efficient. In
addition, it offers benefits of accelerated convergence at higher
computational cost per iteration. It should be noted that the L-
BFGS algorithm and especially the CG algorithm should not be
discarded as very simple methods to obtain NLMOs reliably.
In order to speed up the construction of virtual NLMOs in

difficult cases, the localization procedure for the initial values of
α can be converged using a loose convergence criterion because
NLMOs will be re-localized in subsequent α-iterations anyway.
It is only the final α iteration that should be converged tightly.
This approach is used for the challenging case of virtual NLMOs
of graphene. For the initial value of α, the localization
convergence threshold was set to 2 × 102 a.u. (Figure 3),
whereas the final convergence threshold was set to 1 × 10−1 a.u.
(Figure 4). The localization procedure of 2560 virtual orbitals
takes almost 7800 hybrid CG-BFGS iterations and∼21 h on 120
compute cores. The TR(CG) localization for the same system
takes almost 1500 iterations and ∼32 h on the same number of
compute cores.
The performance of the best localization algorithms was also

compared for the Pipek−Mezey functional. Pipek−Mezey
occupied and virtual orbitals of carborane were constructed
(Figure 5). The ranking of the algorithms in terms of the number
of iterations and time to convergence is different from that for
the Berghold localization. For example, the hybrid CG-BFGS is
now slower than the CG algorithm. TR(CG), on the other hand,
demonstrates the same high performance as before, especially in

the case of costly virtual localization. It should be noted that the
cost of the evaluation of the Pipek−Mezey localization
functional and its derivatives grows more rapidly with the
number of atoms in the system than that of the Berghold (i.e.,
Boys and MLWFs) functional. This is because the calculation of
charges is required for each atom in the Pipek−Mezey scheme.
Even for a relatively small carborane molecule, Pipek−Mezey
localization requires more time per iteration, making the
TR(CG) scheme with its fewer iterations more advantageous
than the line search algorithms. This effect can be seen by
comparing Figure 5 and the carborane panels in Figures 2 and 3.
The advantage of the TR(CG) algorithm is expected to become
more pronounced in larger systems.
To conclude, TR(CG) is the preferable algorithm for the

variable-metric localization of one-electron orbitals as it
demonstrates accelerated convergence near a minimum,
requires fewer iterations, and works well for computationally
demanding cases such as virtual orbitals and/or Pipek−Mezey
localization functional. The main disadvantage of TR(CG) is
that it is harder to implement than the straightforward CG
algorithm,63 which is also shown to be robust but often more
costly.

IV.B. Comparison of OLMOs and NLMOs. The local-
ization of occupied and virtual orbitals was performed using the
CG-BFGS algorithm for a variety of test systems. The minimum
allowed determinant of the NLMO overlap Dtar was set to 10

−1

as suggested in the previous work on occupied NLMOs.63 The
initial value of αwas set to (ln 10)−1 according to eq 7. The value
of αwas decreased iteratively by dividing it by a factor of 1.2 until
the determinant of the NLMO overlap drops below Dtar or until
the optimal value of the loss function stopped changing
appreciably.
Figure 1 demonstrates the relation between the penalty

strength, orbital localization, and determinant of the overlap
matrix. It shows that within a wide range, spanning several orders
of magnitude, the penalty strength can be tuned to produce
nonorthogonal but linearly independent virtual LMOs. What is
even more important is that, within this range, it is possible to
achieve substantial reduction in orbital spread.
As in the case of occupied orbitals,63 the chosen initial α is

sufficiently large to generate nearly orthogonal localized orbitals
in all test systems but, at the same time, is sufficiently small to
permit deviation from orthogonality after a few α-iterations. It
should be noted that, if α is allowed to decrease further, the
numerical precision of the implemented code is sufficient to
obtain NLMOs with det(σ) as low as 10−8. As demonstrated for
water molecules (Figure 1), if the final determinant of the virtual
NLMOs overlap is allowed to drop from the accepted value of
10−1 to 10−4, the localization functional value decreases to 5100
a.u., which is noticeably lower than 8400 a.u. for OLMOs and
6300 a.u. for NLMOs with det(σ) = 0.06. However, NLMOs
with det(σ) ≈ 10−4 cannot be assigned orthogonal counterparts
unambiguously and it is unclear whether they are sufficiently
distinct to be practically useful in local electron correlation
methods. Until further investigation of such nearly-dependent
NLMOs is performed, it is recommended to use safer 10−1

threshold as the target determinant value.
The spatial extent of OLMOS and NLMOs relative to that of

CMOs is shown in Figure 6 for the Berghold functional and in
Figure 7 for the Pipek−Mezey functional. The NLMO overlap
determinants shown on the right vertical axis in these figures are
slightly lower than Dtar, because the penalty strength adjustment
is designed to stop when det(σ) decreases below, and does not

Figure 4.Maximumnormof the gradient in the Berghold localization of
the virtual orbitals of graphene. The convergence threshold was set to 2
× 102 a.u. for the first α-iteration and then gradually decreased by 2 to
the final value of 1 × 10−1 a.u.
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equal to Dtar. It is worth mentioning that the algorithm can be
modified to treat the penalty strength as a Lagrange multiplier
that imposes the det σ(A) = Dtar constraint rigorously.

Ω = Ω + Ω +c DA A A( ) ( ) ( ( ) ln )L P P tar (29)

While this reformulation needs a constrained optimization
algorithm, it would avoid the non-zero penalty values at the
solution.
The spatial spread of occupied Berghold OLMOs is between

78 and 6.5% of that of CMOs, showing that the localization

procedure is highly effective at reducing the size of the orbitals
(Table 1 and Figure 6). As expected, the relative spread is lower
for larger systems. The average relative spread over all tested
systems is 30%, same as that calculated previously for occupied
Berghold orbitals of a slightly different set of systems.63 Removal
of the orthogonality constraint makes occupied orbitals even
more localized. The spread of occupied NLMOs relative to that
of OLMOs ranges from 70 to 94% with the average being 81%.
The same quantitative analysis is applicable to virtual OLMOs
and NLMOs obtained using the Berghold functional (Figure 6).

Figure 5. Maximum norm of the gradient in the Pipek−Mezey localization of the occupied and virtual orbitals of carborane. Calculations were
performed using 1 compute core.

Figure 6. Berghold localization functional relative to that of CMOs. The final determinant of the NLMO overlap is shown on the right vertical axis.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.1c00379
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

I

https://pubs.acs.org/doi/10.1021/acs.jctc.1c00379?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00379?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00379?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00379?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00379?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00379?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00379?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.1c00379?fig=fig6&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.1c00379?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Although the average spatial extent of virtual NLMOs relative to
that of OLMOs is slightly larger than of the occupied orbitals
(87%), the additional gain in the localization is still noticeable
and can substantially reduce the number of retained occupied
virtual amplitudes if employed in local electron correlation
methods. It should be mentioned that most local electron
correlation methods have been formulated to deal with
nonorthogonal localized orbitals38,54,83,84 and, therefore, can
be readily used with NLMOs. It has been shown that, for large
systems, the computational cost of dealing with nonorthogonal
localized orbitals is fully compensated by the locality-enabled
computational savings stemming from the dramatic reduction of
significant double-, triple-, and higher-order substitution
amplitudes.38

The same qualitative trends are observed for occupied and
virtual OLMOs and NLMOs constructed using the Pipek−
Mezey functional. However, because the Pipek−Mezey func-
tional measures orbital locality differentlyatomic charges
instead of the spatial spreadthe quantitative reduction in ΩL
upon orbital localization is lower especially for occupied orbitals
(Table 1). The locality of occupied OLMOs, as measured by
ΩL

PM, is between 99 and 37% of that of CMOs, with the average
being 90%. Lifting the orthogonality constraint makes occupied
Pipek−Mezey orbitals only slightly more localized. The
quantitative descriptors of the virtual Pipek−Mezey localization
are noticeably better. The conventional metric-preserving
localization reduces ΩL

PM to 72% of the corresponding CMO

value. Allowing for nonorthogonality lowers this number
substantially to 59%.
Figures 8, 9, 10, and 11 compare virtual Berghold OLMOs

and NLMOs for representative gas-phase molecules and
periodic systems. Visual examination of these and other systems
reveals that there is always a clear one-to-one correspondence
between virtual OLMOs and NLMOs. For example, both
NLMOs and OLMOs of carborane C2B10H12 (Figure 8)
correctly represent the σ* orbital of a B−B bond and B−H
bond. The figures show that main lobes of NLMOs tend to be
slightly larger than those of OLMOs, and that peripheral tails of
NLMOs are visibly reduced compared to OLMOsthe effects
described previously for occupied orbitals.63,64 The tail
reduction in virtual NLMOs is visible when orbitals are shown
with small isosurface values: 0.02 a.u. for fullerene in Figure 9
and 0.001 a.u. for graphene in Figure 10. The results of visual
comparison are consistent with the numerical characterization
reported in Figure 6.

Figure 7. Pipek−Mezey localization functional relative to that of CMOs. The final determinant of the NLMO overlap is shown on the right vertical
axis.

Table 1. Relative Localization Functional Values for the Test
Systems Shown in Figures 6 and 7

min−max, % mean, %

ΩL
B, occ. OLMOs/CMOs 6.5−78 30

NLMOs/OLMOs 70−94 81
ΩL

B, virt. OLMOs/CMOs 6.1−69 32
NLMOs/OLMOs 75−95 87

ΩL
PM, occ. OLMOs/CMOs 37−99 90

NLMOs/OLMOs 89−100 97
ΩL

PM, virt. OLMOs/CMOs 43−91 72
NLMOs/OLMOs 25−99 82

Figure 8. Nonorthogonal (middle) and orthogonal (right) LMOs of
one virtual orbital of carborane C2B10H12. The isosurface value is 0.04
a.u.
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Finally, the L-BFGS algorithm was used to localize virtual
Berghold orbitals of pentacene using a triple-zeta basis set now
augmented with diffuse functions (aug-TZV2P). In contrast to
some traditional methods that struggle to localize virtual LMOs
for molecules with delocalized electrons when diffuse basis set
functions are included,72 the variable-metric approach produces
well localized aug-TZV2P orbitals of pentacene as efficiently as it
localizes TZV2P orbitals (Figure S1 in Supporting Information).
The final locality of an average aug-TZV2PNLMOof pentacene
is 92% of that of an OLMO, very close to the 91% value of an
average TZV2P orbital and within the 75−95% range reported
for the other molecules (TZV2P) in Table 1. The distribution of
LMOs according to the value of their Berghold localization
functional is shown in Figure S2 in Supporting Information.
IV.C. Comparison of Berghold and Pipek−Mezey

Virtual NLMOs. Figure 11 compares NLMOs and OLMOs

obtained with the Berghold and Pipek−Mezey localization
functionals for benzene. All C−H σ* orbitals are well-
reproduced by NLMOs and OLMOs with both localization
schemes. In the case of OLMOs, it is widely known that the
minimization of the Berghold functional produces τ* anti-
bonding orbitals centered on C−C bonds. These τ* orbitals can
be viewed as mixtures of σ* and π* anti-bonding orbitals. The
minimization of the Pipek−Mezey functional, on the other
hand, has been proven to guarantee to produce well-separated
σ* and π* orbitals if orbital orthogonality is enforced. However,
it has been shown that the minimization of the Pipek−Mezey
functional is not guaranteed to preserve the σ−π separation63 if
the orthogonality constraint is lifted. It has also been
demonstrated that occupied Pipek−Mezey NLMOs of benzene
indeed have the τ-character, unlike occupied Pipek−Mezey
OLMOs of benzene.63 Virtual Pipek−Mezey NLMOs of
benzene obtained in this work are nevertheless well-separated
σ* and π* orbitals. This is in agreement with the previously
presented mathematical arguments63 that state that Pipek−
Mezey NLMOs can retain the σ−π separation but this cannot be
guaranteed.

V. CONCLUSIONS
It has been shown recently that a variable-metric approach to
orbital localization allows us to obtain well-localized occupied
orbitals by directly optimizing orbital mixing coefficients in a
straightforward unconstrained minimization procedure. In this
work, the simplicity of the variable-metric approach is exploited
to design and compare numerous minimization algorithms with
the goal of creating a straightforward and reliable method for
localizing nonorthogonal virtual orbitals. The algorithms
implemented in CP2Ka popular massively parallel freely
distributed software package for modeling of materials and

Figure 9. Nonorthogonal (left) and orthogonal (right) LMOs of two
virtual orbitals of C60 fullerene. The isosurface value are 0.06 a.u. (top)
and 0.02 a.u. (bottom). The low isosurface value emphasizes orbital
tails.

Figure 10. Orthogonal (top) and nonorthogonal (bottom) LMOs of
the virtual orbital of graphene. The low isosurface value of 0.001 a.u
emphasizes the tail reduction of the orbital.
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moleculesbelong to two families of optimization strategies:
multidimensional line search and TR optimization. The list
includes SD, CG, L-BFGS, and hybrid CG-BFGS algorithms as
well as TR methods based on the Cauchy-point and CG
subproblem solvers.
Based on the results of an extensive performance analysis, it

can be argued that the TR(CG) algorithm is the best overall
method to obtain NLMOs using the variable-metric approach.
While the computational cost of a TR(CG) iteration is higher
than that of all line search methods, its convergence rate often
compensates for this drawback, especially in difficult cases. The
tests show that the L-BFGS and CG algorithms can also be used
to obtain virtual NLMOs reliably, disputing their poor
reputation in metric-preserving localization of virtual orbitals.
The simplicity of the CG algorithm and the ease of its
implementation can outweigh its computational overhead in
many cases. The convergence of SD and TR(Cauchy) is too
slow to make them practical.
Comprehensive tests demonstrate that the implemented

algorithms are capable of producing well-localized Berghold
(i.e., Boys and MLWFs) and Pipek−Mezey, orthogonal and
nonorthogonal, and occupied and virtual orbitals for molecules
and periodic materials. Relaxing the orthogonality constraint
produces noticeable gains in the locality of orbitals. If averaged
across the tested systems, virtual NLMOs are 13% (Berghold)
and 18% (Pipek−Mezey) more localized than their orthogonal
counterparts. The reduction for the occupied orbitals is 19%
(Berghold) and 3% (Pipek−Mezey). The ability of the variable-
metric localization method to improve the locality of both
occupied and virtual orbitals makes it a promising tool in
designing more efficient local electron correlation methods.
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