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ABSTRACT: Spatially localized one-electron orbitals, orthogonal
and non-orthogonal, are widely used in electronic structure theory to
describe chemical bonding and speed up calculations. In order to
avoid linear dependencies of localized orbitals, the existing local-
ization methods either constrain orbital transformations to be unitary,
that is, metric preserving, or, in the case of variable-metric methods,
fix the centers of non-orthogonal localized orbitals. Here, we
developed a different approach to orbital localization, in which
these constraints are replaced with a single restriction that specifies
the maximum allowed deviation from the orthogonality for the final
set of localized orbitals. This reformulation, which can be viewed as a generalization of existing localization methods, enables one to
choose the desired balance between the orthogonality and locality of the orbitals. Furthermore, the approach is conceptually and
practically simple as it obviates the necessity in unitary transformations and allows one to determine optimal positions of the centers
of non-orthogonal orbitals in an unconstrained and straightforward minimization procedure. It is demonstrated to produce well-
localized orthogonal and non-orthogonal orbitals with the Berghold and Pipek−-Mezey localization functions for a variety of
molecules and periodic materials including large systems with nontrivial bonding.

■ INTRODUCTION

Spatially localized orbitals are of paramount importance in one-
electron theories such as the Hartree−Fock method and Kohn−
Sham density functional theory as well as in post-Hartree−Fock
wave function-based electron-correlation methods. Localized
orbitals are widely used to describe and visualize chemical
bonding between atoms, thus helping classify bonds and
understand electronic-structure origins of observed properties
of atomistic systems.1−5 Furthermore, localized orbitals are the
key ingredient in multiple local electronic-structure meth-
ods6−13 that dramatically reduce the computational cost of
modeling electronic properties of large systems.14−18 Spatially
localized orbitals are known as localized molecular orbitals
(LMOs) in the field of molecular quantum chemistry and
maximally localized Wannier functions (MLWFs) in solid state
physics and materials science.19 Here, they will be collectively
referred to as LMOs, whereas the eigenstates of the effective
one-electron Hamiltonian will be called canonical molecular
orbitals (CMOs) regardless of whether the system is isolated or
treated with periodic boundary conditions.
In traditional localization methods, LMOs are constructed by

finding a unitary transformation of CMOs that minimizes a
localization function that effectively measures the spread of
individual orbitals. Since CMOs are orthogonal and a unitary
transformation preserves the orbital metric, LMOs obtained in
this way are orthogonal (OLMOs) by construction.20 Multiple
localization functions have been proposed for molecular systems

including Boys−Foster,1 Edmiston−Ruedenberg,2,21,22 Pipek−
Mezey,3 and von Niessen.4 The Boys−Foster localization1 is
perhaps themost popular because of the simplicity of its physical
interpretation, low computational complexity, and ease of
implementation. The Pipek−Mezey localization,3 which max-
imizes atomic charges23−25 of each orbital, is also widely used
because it does not mix LMOs representing σ and π bonds and
thus gives a clear picture of bonding patterns. In the past decade,
these well-established localization functions have been modified
to reduce orbital tails and produce more uniform localization
across the set of LMOs.25−30 For large supercells of condensed-
phase periodic systems, where electronic structure can be
described with the Γ-point sampling of the Brillouin zone,
several efficient optimization methods have been proposed to
construct MLWF.19,31−35 While the methods listed above rely
on different localization criteria, they have been formulated to
ensure that orbitals remain orthogonal in a localization
procedure. This is typically achieved through the exponential34
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or Cayley parametrization of unitary transformations or through
simple Jacobi rotations.2

Due to the imposed orthogonality condition, orthogonal
LMOs exhibit small nonzero values even far away from the
localization center. These orthogonalization tails can complicate
the interpretation of chemically relevant electronic-structure
information and make its transferability from one system to
another more difficult. More importantly, the tails can reduce
orbital locality making orbital-based local correlation methods
less computationally efficient. To mitigate the undesirable
orthogonality effects, metric-preserving unitary transformation
has been applied to non-orthogonal orbitals.36 Furthermore, it
has been proposed to replace unitary transformation with more
general variable-metric nonsingular transformations. This
generalization lifts the orthogonality constraint in the local-
ization procedure and increases the number of degrees of
freedom available to LMOs.37−43 It has been found that non-
orthogonal localized molecular orbitals (NLMOs) are indeed
about 10−30% more localized than OLMOs if measured by the
value of the Boys−Foster function.42,44
Substantial recent efforts have been made to develop reliable

algorithms to construct NLMOs.36,42,44,45 Despite noticeable
progress the existing methods produce NLMOs that are either
still fairly similar to OLMOs46 or lead to the linear dependence
between the orbitals.42 To overcome the linear dependence
problem, Yang and co-workers42,43 have developed a localization
method in which the centers of NLMOs are fixed during the
minimization of the localization function. The positions of the
centers can be taken from the corresponding OLMOs42 or
simply guessed based on the knowledge of bonding patterns in a
system.43 While this method solves severe linear dependence
issues, it requires either the computational effort to find the
OLMOs centroids or good understanding of bonding properties
in advance, which may limit the application of the method to
relatively simple systems with unambiguous Lewis structures.
In this work, we propose a variable-metric method to simplify

the construction and improve the locality of LMOs. The key new
component of the method is a simple penalty function that
prevents LMOs from becoming linearly dependent and allows
one to choose the desirable balance between the non-
orthogonality and locality of LMOs. The penalty function
replaces all constraints that are normally imposed on localized
orbitals with a single restriction that specifies the allowed
deviation from the orthogonality for the final localized orbitals.
For OLMOs, the method is advantageous because it optimizes
orbital mixing coefficients directly, obviating complicated
parametrization of unitary transformations and simplifying
orbital optimization algorithms. For NLMOs, the new approach
allows one to determine the optimal positions of their centers
automatically in an unconstrained and straightforward opti-
mization procedure, without a priori knowledge of bonding
patterns in the system.

■ METHODOLOGY

Theory. The localization procedure starts with a set of
occupied one-electron states |i0⟩. These orbitals are not assumed
to be canonical or even orthogonal. However, they are assumed
to be normalized, which does not reduce the generality of the
method. Furthermore, the initial orbitals must be linearly
independent; that is, their overlap matrix σji

0 ≡ ⟨j0|i0⟩ must be
invertible. The trial NLMOs are expressed as a linear
combination of these initial states

j i Ai
j0| ⟩ = | ⟩ (1)

The conventional tensor notation is used to work with the non-
orthogonal orbitals:47 covariant quantities are denoted with
subscripts, contravariant quantities with superscripts, and
summation is implied over the same covariant and contravariant
orbital indices. Summation is not implied if two indices are both
covariant.
The loss function minimized in this work contains two terms:

a conventional localization functionΩL and a term that penalizes
unphysical states with linearly dependent occupied orbitals ΩP

cA A A

A A

( ) ( ) ( ),

( ) ln det ( )

L P P

P σ

Ω = Ω + Ω

Ω = − [ ] (2)

where cP > 0 is the penalty strength and σ is the NLMO overlap
matrix

k l A Akl
j
k ji

i
l

0σ σ= ⟨ | ⟩ = (3)

If the NLMOs are normalized, the determinant of σ varies
from 1 for orthogonal NLMOs to 0 for linearly dependent
NLMOs. The penalty functionthe key ingredient of the
proposed methodvaries from 0 to +∞ for these two extreme
cases, making the linearly dependent state inaccessible in the
localization procedure with finite penalty strength cP. A
normalization constraint can be imposed on NLMOs if their
coefficients are expressed in terms of independent optimization
parameters denoted with lowercase a

A a a a a N( )i
j

i
j

k
j kl

l
j

i
j j

0 1/2σ= ≡−
(4)

where the a-dependent normalization coefficient Nj is defined
for brevity. It should be noted that the normalization
requirement does not reduce the flexibility of the localization
procedure and can be removed altogether if the penalty function
is replaced with its more general version

A A A( ) ( ) ln det diag( ( ))P
G

P σΩ = Ω + [ ] (5)

with A now being independent optimization parameters. It is
worth mentioning that the determinant of the NLMO overlap is
equal to the square of the volume of the multidimensional
parallelepiped spanned by the NLMO vectors, defined by matrix
A.
The inclusion of the penalty term converts the localization

procedure into an unconstrained, straightforward optimization
problem. Additionally, adjusting the strength of the penalty cP
enables one to achieve the right balance between the non-
orthogonality and the locality of the orbitals (see below).

Penalty Strength. If the penalty strength cP is extremely
large, ΩL is negligible compared to the penalty term and the
minimization of Ω is numerically equivalent to a trivial orbital
orthogonalization. In the opposite case of extremely small cP, the
minimization of Ω may result in linear dependence between
NLMOs reported earlier.43

As we show below, there is a wide range of cP values between
the two extremes that produce NLMOs that are substantially
more localized than OLMOs and linearly independent. A simple
strategy to find an appropriate penalty strength is to minimizeΩ
with a sufficiently large initial cP value and then gradually
decrease cP until the determinant of the overlap of the optimal
NLMOs drops below a desired threshold Dtar ∈ (0, 1]. The
initial value of cP should be chosen to balance approximately the
localization and penalty components of Ω. Thus, a reasonable
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initial value of cP can be estimated by assuming that the
reduction inΩL upon the minimization ofΩ has the same order
of magnitude as the change in the penalty cP ΩP:

c
I A
A I

I
( ) ( )
( ) ( )

( )P
init L L

P P

L

P
L

β
β

∼
Ω − Ω *
Ω * − Ω

=
*
*Ω

(6)

where A* denotes the (yet unknown) solution to the
minimization problem,

I A
I

( ) ( )
( )

0, 1L
L L

L
β* ≡

Ω − Ω *
Ω

∈ [ ]
(7)

is the (positive) expected relative reduction in the localization
function, and

I
A

I
ln

det ( )
det ( )

ln
det ( )

D
0P

tar
Pβ σ

σ
σ β* ≡

*
≈ ≡ >

(8)

is the logarithm of the ratio of the initial and final determinants.
The importance of eqs 6−8 is that they allow one to estimate the
initial value of cP as a product of ΩL(I), which can be easily
calculated in the beginning of the optimization procedure, and a
dimensionless constant α

c I I( ) ( )P
init L

P
L L

β
β

α=
*

Ω ≡ Ω
(9)

Equation 9 makes clear that the penalty component is an
extensive function of a system with the units that are consistent
with the localization component. Although the optimal
dimensionless parameter βL* is not known a priori, its magnitude
can be easily estimated to obtain a sufficiently large initial guess
for cP. For example, an optimization of canonical orbitals det
σ(I) = 1 that should produce the NLMO overlap determinant
Dtar ≈ 0.1 can be initialized by adopting the maximum possible
value of βL* = 1, giving α = ln−1 10.
The procedure for tuning cP is shown as the outer loop of the

optimization algorithm in Figure 1. Its only required input isDtar.
It is worth mentioning that the algorithm can be modified to
treat the penalty strength as a Lagrange multiplier that imposes
the det σ(A*) = Dtar constraint rigorously.
Implementation. In this work, we adopted the localization

function proposed by Resta31,32 and generalized by Berghold et
al.34 to three dimensions and simulation cells of general shape
and symmetry:

z

z A B A

B m n

A( ) ,

,

e

K i
K i

K

i
K m

i mn
K n

i

mn
K iG r

L
2

0 0
K

∑ ∑ ωΩ = − | |

=

= ⟨ | | ⟩· ̂
(10)

where r ̂ is the position operator in three dimensions and ωK and
GK are suitable sets of weights and reciprocal lattice vectors,
respectively, labeled by index K.33,34 We chose to write the
summation over K explicitly because K is not an orbital index.
The function in eq 10 can be used for both gas-phase and
periodic systems.34 In the former case, the function is equivalent
to the Boys−Foster localization.32,34 In the latter case, its
applicability is limited to the electronic states described within
the Γ-point approximation.
We also considered the Pipek−Mezey localization func-

tion3,25 that has the advantage of preserving the separation of σ
and π bonds and is commonly employed for molecular system

z

z A B A

B m n

A( ) ,

,

1
2

( )

K i
i
K

i
K m
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i

mn
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2
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∑ ∑

∑ χ χ χ χ

Ω = − | |

=

= ⟨ | | ⟩⟨ | + | ⟩⟨ | | ⟩
μ

μ
μ μ

μ

=

∈ (11)

Figure 1. Algorithm for the optimization of NLMOs.
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where zi
K is the (real) contribution of orbital i to the Mulliken

charge of atom K and |χμ⟩ and |χ
μ⟩ are atom-centered covariant

and contravariant basis set functions.33,34 The summation over μ
is written explicitly to emphasize that it is restricted to the basis
functions centered on atom K.
The unconstrained minimization of function Ω with fixed cP

can be carried out with a variety of algorithms. In this work, we
used a simple conjugate gradient algorithm summarized in

Figure 1. The gradient Gi
j

ai
j

≡ ∂Ω
∂

required in the algorithm is a

sum of the localization Li
j

ai
j

L≡ ∂Ω
∂

and penalty Pi
j

ai
j

P≡ ∂Ω
∂

components:

G L c Pk
l

k
l

k
l

P= + (12)

These components can be readily expressed in terms of the
derivatives with respect to the transformation coefficients

Xk
l

Ak
l

X̃ ≡ ∂Ω
∂

, where X is either L or P:

X X
A
a

X A A X N( )( )i
j

k
l

k
l

i
j

i
j

in
n

j
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j m
j

j
0σ= ̃ ∂
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(13)

L B A z B A z4 Re( ) Re( ) Im( ) Im( )k
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K kn

K n
l l

K
kn
K n

l l
K∑ ω̃ = − [ + ]

(14)

P A2k
l

km
m

n
nl0σ σ̃ = − (15)

If the gradient in eq 14 is computed for the Pipek−Mezey
localization function, weights ωK are equal to one and the
imaginary part of zi

K is equal to zero.
The logarithm of the determinant of the symmetric positive

definite overlap matrix σ is computed using the trace of the
matrix logarithm via Mercator series:

s I X s

I X I X

I X X X X X

ln det( ) ln det( ) det( ) det( ) ,

ln det( ) Tr ln ,

ln
1
2

1
3

1
4

...2 3 4

σ = [ + ]

+ = [ + ]

[ + ] = − + − +
(16)

where s = [diag(σ)]1/2. The series converges only if ∥X∥F < 1. If
it is not the case, the square root of I +X is computed recursively
until the norm requirement is satisfied. The advantage of this
algorithm is that it relies exclusively on matrix−matrix
multiplication and can be readily implemented in any matrix
library. Its computational cost grows cubically with the number
of orbitals for dense matrices and linearly for sparse overlap
matrices of localized orbitals.
The localization procedure was implemented in the CP2K

software package.48 The DBCSR library49 that handles sparse
matrices efficiently on massively parallel computing platforms is
utilized to enable orbital localization in large systems.

Computational Details. To test the localization procedure,
we constructed NLMOs for several systems ranging from a
simple water molecule to complex molecules with nontrivial
bonding patterns and to large periodic systems. For all systems,
the initial CMOs were obtained using the conventional
diagonalization-based SCF procedure implemented in the
electronic-structure module of CP2K. The Becke−Lee−
Yang−Parr generalized gradient approximation50,51 was used
as the exchange−correlation functional. Goedecker−Teter−
Hutter pseudopotentials52 were used together with a triple-ζ
atom-centered Gaussian basis set with two sets of polarization
functions for all atoms. The energy cutoff was set at 600 Ry to
define the auxiliary plane-wave basis set in the construction of
the effective Hamiltonian. The integration over the Brillouin
zone was performed using the Γ-point approximation.

■ RESULTS AND DDISCUSSION
Compromise between Locality andOrthogonality. For

all test systems, the conjugate gradient localization procedure in

Figure 2. Dependence of the optimal localization function and determinant of the NLMO overlap on αthe adjustable part of the penalty strength.
The first point on the left is α = ln−1 10 ≈ 0.434.
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Figure 1 is stable and efficient. The numerical precision of the
implemented code allows one to treat NLMOs with det(σ) as
low as 10−8 as distinct. However, a visual inspection of NLMOs
with such a tiny overlap determinant reveals that many orbitals
become almost identical (for example, localized on the same
bonds) with only minor physically irrelevant differences. At the
same time, NLMOs with det(σ) > 10−1 are found to highlight
bonding patterns in all test systems correctly. Therefore, we set
the minimum allowed NLMO determinant Dtar to 10−1 in all
tests. The initial value of α = ln−1 10 was set according to eq 9.
The value of αwas decreased by a factor of 2 in the outer loop of
the algorithm (Figure 1) until the overlap determinant fell below
Dtar or until the optimalΩL stopped changing with cP appreciably
(see water, diborane, and heptane examples in Figure 2).
Since the determinant of the overlap is proportional to the

square of the volume of the parallelepiped spanned by the
NLMO vectors,Dtar = 10

−1 corresponds to the volume of det(A)
≈ 0.32, which is large enough to produce distinct NLMOs.
Figure 2 demonstrates how the penalty strength affects the

optimal orbital localization and the determinant of the orbital
overlap. In all tests, the initial penalty strength is sufficiently large
to produce almost perfectly orthogonal localized orbitals. At the
same time it is not too large to yield more localized non-
orthogonal localized orbitals after just several steps of cP
adjustment.
Figure 2 shows that within a large range of values spanning 3−

6 orders of magnitude cP serves as an adjustable parameter that
can be tuned to achieve a desirable locality−orthogonality
compromise. Thus, the flexibility of the unconstrained local-
ization method presented here allows one to combine the
strengths of the existing localization methods that produce
either orthogonal orbitals or NLMOs with fixed localization
centers. It is also important to emphasize that the localization
procedure is unconstrained, does not require complicated
parametrization of unitary matrices, and relies on a simple easy-
to-implement conjugate gradient optimization algorithm.
NLMOsMore Localized thanOLMOs. Figure 2 reveals the

expected trend: the orbitals become more localized as they are
allowed to be less orthogonal. The relative reduction in the

localization is quantified by 100%X Y
Y X

Y/
( ) ( )

( )
L L

L
Δ ≡ ×Ω − Ω

Ω ,

where X and Y can refer to CMOs, OLMOs (obtained with
the conventional unitary transformations), or NLMOs. Table I
compares the relative reduction as measured by the Berghold
function for OLMO/CMO, NLMO/CMO, and NLMO/

OLMO pairs. Although NLMOs are constructed with Dtar set
to 10−1, most final values of the NLMO overlap determinants
(last column in Table I) are somewhat lower than Dtar because
the last outer-loop iteration brings det(σ) below Dtar.
The relative reduction in localization between OLMOs and

CMOs ranges from 22% to 98% and reaches high values for
extended systems (e.g., icosane) where the localization has the
ability to reduce the spread significantly. The average relative
reduction for the data set considered here is 70%. The NLMOs
are even more localized than OLMOs. The relative reduction in
localization between NLMOs and OLMOs ranges from 6% to
30% with the data set average of 18%. This additional reduction
in the orbital spread can lead to a substantial reduction in the
number of significant excitation amplitudes in local electron-
correlation methods and to noticeable computational savings.
The relative reduction in localization between OLMOs and

NLMOs is similar to that obtained with the algorithms that fix
NLMO localization centers.42,43 Since the NLMOs centers were
previously fixed at the position of OLMOs centers, this implies
that the locations of the centers of NLMOs andOLMOs are very
similar. It also suggests that the NLMOs obtained with Dtar =
10−1 represent the electronic structure of molecules reliably and
also serves as an additional verification of the previously
employed fixed-center procedures.

Figures 3, 4, 5, and 6 compare the shapes of NLMOs and
OLMOs for several representative isolated molecules and
periodic systems. Figure 3 shows that the NLMOs and
OLMOs of a carborane C2B10H12 molecule representing a
three-center−two-electron B−B−B bond have similar positions
of their centroids and similar overall shape. The main lobes (red
region) of NLMOs are larger than those of OLMOs, whereas

Table I. Relative Reduction in the Localization Function and the Final Determinant of the NLMO Overlap

molecules ΔOLMOs/CMOs ΔNLMOs/CMOs ΔNLMOs/OLMOs det(σ)

H2O 22 36 18 0.100
CO2 65 76 30 0.025
diborane (B2H6) 62 64 6.2 0.745
borazine (B3N3H6) 73 78 20 0.026
carborane (C2B10H12) 72 76 17 0.085
propene (C3H6) 61 67 14 0.042
1-butyne (C4H6) 62 70 19 0.063
benzene (C6H6) 69 78 28 0.041
heptane (C7H16) 89 90 12 0.122
icosane (C20H42) 98 98 11 0.053
decacyclene (C72H24) 94 95 16 0.042
graphene 77 82 21 0.025

average 70 76 18 0.114

Figure 3. Orthogonal (middle) and non-orthogonal (right) LMOs of
three-center−two-electron B−B−B bond in the carborane molecule
C2B10H12. The isosurface value is 0.04 au.
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NLMO peripheral tails are smaller. This redistribution of the
probability density amplitude toward the center of NLMO is
what makes NLMOs more localized than OLMOsthe effect
noted previously.44

The reduced tails of NLMOs are also visible in Figure 4, which
shows LMO representation of a π bond in the extended π-
conjugated 2D polymer decacyclene C72H24. Without strict
orthogonality constraints, these tails can be reduced even further
by imposing higher order (e.g., quartic) penalty on amplitudes
far away from the orbital center.27

σ−π Mixing. Figure 5 compares typical NLMOs and
OLMOs of graphene. The single C−C σ bonds are well-
reproduced by OLMOs and NLMOs, but both types of LMOs
fail to represent the double bonds adequately. OLMOs tend to
delocalize over several bonds, complicating analysis of the

electron pairs. Although NLMOs are more localized and extend
only over two carbon atoms, they tend to take the shape of a
mixture between σ and π bonds producing the so-called τ
orbitals. To prevent the σ−π mixing, the Berghold localization
function was replaced with the Pipek−Mezey function.
The OLMOs and NLMOs obtained with the Pipek−Mezey

and Berghold localization schemes were compared for benzene
and allyl alcohol (Figure 6). For OLMOs, the Pipek−Mezey
scheme preserves the separation between the σ and π bonds.3

Upon a visual inspection of NLMOs of these systems, Pipek−
Mezey orbitals appear to be more localized than those obtained
with the Berghold (i.e., Boys−Foster) scheme. A quantitative
comparison of the locality of Pipek−Mezey and Berghold LMOs
is difficult because there is no universal function that measures
orbital locality. If the Pipek−Mezey function is chosen as a
common measure to compare the locality of LMOs, then
Pipek−Mezey NLMOs appear more local because they
minimize the common measure by definition (Figure 7, lower
panel). If the common measure is chosen to be the Berghold
spread, then Berghold NLMOs appear more local for the same
reason (Figure 7, upper panel).
It is important to note that as the determinant of the NLMO

overlap decreases the σ−π separation of the Pipek−Mezey
scheme is not maintained and a pair of σ and π bonds tend tomix
generating a pair of τ and τ′ NLMOs (Figure 6). It has been
shown that, in the original Pipek−Mezey localization scheme
designed for OLMOs, τ and τ′ orbitals cannot be more localized
than σ and π orbitals3

( ) ( ) ( ) ( )L
PM

L
PM

L
PM

L
PMσ π τ τΩ + Ω ≤ Ω + Ω ′ (17)

Here we used a simple two-orbital system as an example to
demonstrate that, in the case of NLMOs, the Pipek−Mezey
localization function can generate τ and τ′ as the most localized
solution. We consider two atoms A and B, each with px and pz
atomic orbitals, separated along the x axis as shown in Figure 8A.
The canonical bonding σ(π) orbital is represented by the
positive linear combination of two px(pz) atomic orbitals.
Mixing the occupied σ and π orbitals produces τ and τ′ orbitals:

cos( ) sin( )

sin( ) cos( )

τ σ π

τ σ π

| ⟩ = | ⟩ Θ + | ⟩ Θ

| ′⟩ = −| ⟩ Φ + | ⟩ Φ
(18)

In the general case of NLMOs, there are two mixing angles Θ
and Φ that can be varied independently to minimize ΩL

PM.
OLMOs are recovered when Θ = Φ. Figure 8B shows the
dependence of the Pipek−Mezey localization function onΘ and
Φ. The red diagonal line corresponds to all possible OLMOs.
The metric-preserving yellow line describes the NLMOs with
det(σ) = 10−1. As shown in the work of Pipek and Mezey,3 the σ
and π orbitals (Θ = Φ = 0) minimize the localization function
along the diagonal line. But as the orbitals are allowed to be less
orthogonal, the most localized solution Θ + Φ = π/2
corresponds to τ and τ′. This simple example shows that,
generally speaking, σ−π separation cannot be expected for
NLMOs even if they are constructed with the Pipek−Mezey
method.

■ CONCLUSIONS
In this work, we proposed a new approach to construct localized
orthogonal and non-orthogonal one-electron orbitals. In this
approach, the catastrophic linear dependence of the orbitals is
prevented by augmenting the localization function with a simple

Figure 4. OLMO (top) and NLMO (bottom) representation of a π
bond in the π-conjugated 2D polymer decacyclene C72H24. The
isosurface value is set at a relatively low value of 0.002 au to emphasize
the tails of the orbitals.

Figure 5. Representative OLMOs (top) and NLMOs (bottom) of
graphene. The isosurface value is 0.06 au.
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single-value penalty that measures the degree of orbital non-
orthogonality and thus allows one to avoid nearly dependent
states in the localization procedure. The proposed penalty
function enables a more flexible approach to orbital localization
as it allows one to replace traditional metric-preserving unitary

transformations of the orbitals withmore general variable-metric
nonsingular transformations. The approach is also conceptually
simpler because a complicated parametrization of unitary
transformations36 is obviated, even in the case of OLMOs,
allowing one to optimize orbital mixing coefficients directly
using simple unconstrained minimization algorithms.
The new approach is easy to implement as was demonstrated

for the Berghold34 and Pipek−Mezey3 localization functions.
Numerous tests were performed for gas-phase and periodic
systems. For gas-phase molecules, the Berghold scheme is

Figure 6.Comparison of OLMOs (top) andNLMOs (bottom) computed with the Berghold and Pipek−Mezey localization functions for benzene and
allyl alcohol. The isosurface value is 0.05 au.

Figure 7. Locality of LMOs of graphene measured by the Berghold
spread (upper panel) and Pipek−Mezey localization function (lower
panel). LMOs are obtained by minimizing the Berghold (blue) and
Pipek−Mezey (orange) localization functions.

Figure 8. (A) σ and π separation and mixed orbitals for a toy system of
two atoms (A and B), each with px and pz atomic orbitals. (B) Contours
of the localization function with different values of Θ and Φ: red line,
det(σ) = 1; yellow line, det(σ) = 10−1.
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equivalent to the Boys−Foster localization. For periodic
systems, the electronic structure of which can be described in
the Γ-point approximation, it produces orthogonal and non-
orthogonal MLWFs.
The tests show that orbital localization is robust when

implemented with a simple conjugate gradient algorithm. The
procedure generates NLMOs without a priori knowledge of
bonding patterns in the system. An additional black-box
algorithm is proposed to tune the penalty strength and produce
the desired balance between the orthogonality and locality of
NLMOs. The desired balance is specified as the minimum
allowed determinant of the NLMO overlap matrixan
intuitively clear parameter in the (0,1] range. We found that
NLMOs with the minimum allowed determinant of the order of
10−1 correctly recover bonding patterns in a variety of molecules
and materials, including large systems with nontrivial bonding.
NLMOs are approximately 18% more localized than OLMOs
and have reduced tails. This observation is consistent with
previous results obtained for the NLMOs with the localization
centers fixed at the OLMO positions.42,43 It serves as an
additional verification of the previously employed procedures
and implies that the NLMOs representation of the electronic
structure of molecules is reliable.
To our surprise, the Pipek−Mezey localization, which has

been a reliable method to separate orthogonal σ and π orbitals in
locally planar systems with double bonds, tends to mix these
orbitals when they are allowed to become strongly non-
orthogonal. The origins of this effect was explained using a
simple two-orbital system as an example.
The broader significance of this work is in the new continuous

easy-to-compute non-orthogonality measure that can be
adopted by a variety of electronic-structure theories that benefit
from non-orthogonal representation of wave functions.
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