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Communication: Compact orbitals enable low-cost linear-scaling
ab initio molecular dynamics for weakly-interacting systems

Hayden Scheiber,a) Yifei Shi, and Rustam Z. Khaliullinb)

Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Québec H3A 0B8, Canada
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Today, ab initio molecular dynamics (AIMD) relies on the locality of one-electron density matrices
to achieve linear growth of computation time with the system size, crucial in large-scale simulations.
While Kohn-Sham orbitals strictly localized within predefined radii can offer substantial compu-
tational advantages over density matrices, such compact orbitals are not used in AIMD because a
compact representation of the electronic ground state is difficult to find. Here, a robust method for
maintaining compact orbitals close to the ground state is coupled with a modified Langevin integrator
to produce stable nuclear dynamics for molecular and ionic systems. This eliminates a density matrix
optimization and enables first orbital-only linear-scaling AIMD. An application to liquid water demon-
strates that low computational overhead of the new method makes it ideal for routine medium-scale
simulations, while its linear-scaling complexity allows us to extend first-principle studies of molecular
systems to completely new physical phenomena on previously inaccessible length scales. Published
by AIP Publishing. https://doi.org/10.1063/1.5029939

Since the unification of molecular dynamics and den-
sity functional theory (DFT),1 ab initio molecular dynamics
(AIMD) has become an important tool to study processes
in molecules and materials. Unfortunately, the computational
cost of the conventional Kohn-Sham (KS) DFT grows cubi-
cally with the number of atoms, which severely limits the
length scales accessible by AIMD. To address this issue,
substantial efforts have been directed to the development of
linear-scaling (LS) DFT.

In all LS DFT methods, the delocalized eigenstates of the
effective KS Hamiltonian must be replaced with an alterna-
tive set of local electronic descriptors. Most LS methods2–5

explore the natural locality of the one-electron density matrix
(DM). However, the DM DFT becomes advantageous only
for impractically large systems when accurate multifunction
basis sets are used.3,6–8 This issue is rectified in optimal-
basis DM methods9–11 that contract large basis sets into a
small number of new localized functions and then optimize
the DM in the contracted basis. Despite becoming the most
popular approach to LS DFT, the efficiency of these meth-
ods is hampered by the costly optimization of both the con-
tracted orbitals and the DM.12 From this point of view, a
direct variation of compact molecular orbitals—orbitals that
are strictly localized within predefined regions—is preferable
because LS can be achieved with significantly fewer vari-
ables. Advantages of the orbitals-only LS DFT are especially
pronounced in accurate calculations that require many basis
functions per atom. Unfortunately, the development of promis-
ing orbital-based LS methods has been all but abandoned13,14
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because of the inherently difficult optimization of localized
orbitals.2,13–17

Thus, despite impressive progress of the LS description of
the electronic and atomic structure of large static systems,6,18

the high computational overhead of existing LS methods
restricts their use in dynamical simulations to very short time
scales, systems of low dimensions, and low-quality minimal
basis sets.6,18–20 On typical length and time scales required in
practical and accurate AIMD simulations, LS DFT still cannot
compete with the straightforward low-cost cubically-scaling
KS DFT.

In this work, we present an AIMD method that over-
comes difficulties of DFT based on compact orbitals to achieve
LS with extremely low computational overhead. To demon-
strate advantages of the new method, we applied it here to
systems of weakly interacting molecules. However, the same
approach is readily applicable to systems of strongly interact-
ing fragments that do not form strong covalent bonds such
as ionic materials—salts, liquids, and semiconductors. A gen-
eralization of the method to all finite-gap systems, including
covalently bonded atoms, will be reported later.

The new AIMD method utilizes a recently developed
LS DFT8 based on absolutely localized molecular orbitals
(ALMOs)—compact orbitals first described in Ref. 21. Unlike
delocalized KS orbitals, each ALMO has its own localization
center and a predefined localization radius Rc that typically
includes nearby atoms or molecules.8,21 In the current imple-
mentation, a localization center is defined as a set of all Gaus-
sian atomic orbitals of one molecule. However, the approach
can use other local and nonlocal basis sets.22,23 The key fea-
ture of ALMO DFT is that its one-electron wavefunctions are
constructed in a two-stage self-consistent-field (SCF) proce-
dure8 to circumvent the problem of the sluggish variational
optimization emphasized above. In the first stage, ALMOs are
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constrained to their localization centers24 whereas, in the sec-
ond stage, ALMOs are relaxed to allow delocalization onto
the neighbor molecules within their localization radius Rc. To
achieve a robust optimization in the problematic second stage,
it is important to keep the delocalization component of the
trial wavefunction orthogonal to the fixed orbitals obtained in
the first stage. For mathematical details, see the ALMO SCF
method in Ref. 8. ALMO DFT algorithms are presented in the
supplementary material.

ALMO constraints imposed by Rc prohibit electron
density transfer between distant molecules but retain all
other types of interactions such as long-range electrostatic,
exchange, polarization, and—if the exchange-correlation (XC)
functional includes them—dispersion interactions.25 Since the
importance of electron transfer decays exponentially with dis-
tance in finite-gap materials,2 the ALMO approximation is
expected to provide a natural and accurate representation of
the electronic structure of molecular systems. Because of
the greatly reduced number of electronic descriptors and the
robust optimization, the computational complexity of ALMO
DFT grows linearly with the number of molecules, while
its computational overhead remains very low. These features
make ALMO DFT a promising method for accurate AIMD
simulations of large molecular systems.

The challenge of adopting ALMO DFT for dynamical
simulations arises from the slightly nonvariational character
of the localized orbitals. While ALMOs are variationally opti-
mized in both SCF stages, the occupied subspace defined in
the first stage must remain fixed during the second stage to
ensure convergence. In addition, electron transfer effects can
suddenly become inactive in the course of a dynamical sim-
ulation when a neighboring molecule crosses the localization
threshold Rc. Futhermore, the variational optimization in any
AIMD method is never complete in practice and interrupted
once the maximum norm of the gradient of the energy with
respect to the electronic descriptors drops below small but
nevertheless finite convergence threshold εSCF. These errors
do not affect the accuracy of static ALMO DFT calcula-
tions, geometry optimization, and Monte Carlo simulations.
Unfortunately they tend to accumulate in molecular dynam-
ics trajectories leading to non-physical sampling and eventual
failure. Traditional strategies to cope with these problems are
computationally expensive and include computing the nonva-
riational contribution to the forces via a variational coupled-
perturbed procedure,4,26 increasing Rc, and decreasing
εSCF.

In this work, we propose another approach that obvi-
ates the need in a coupled-perturbed solver, relaxes tight
constraints on Rc and εSCF, and thus enables us to main-
tain stable dynamics and to keep the algorithmic complex-
ity and cost of simulations low. In our approach, the forces
on atoms are calculated approximately after the two-stage
ALMO SCF using a straightforward procedure that com-
putes only the Hellmann-Feynman and Pulay components and
neglects the computationally intense nonvariational compo-
nent of the forces. The difference between these approximate
ALMO forces and the reference forces that could be obtained
from perfectly converged fully-delocalized KS orbitals
is δf iα(t),

f KS
iα (t) = f ALMO

iα (t) + δfiα(t), (1)

where α is a Cartesian component of the force acting on atom
i at time t. δf iα(t) comprises all neglected terms that origi-
nate from a finite localization radius Rc and incomplete SCF
optimization. δf iα(t) can be reduced to zero systematically by
increasing Rc and decreasing εSCF.

Our approach to compensate for the missing δf iα(t) term
is inspired by the methodology introduced into AIMD by
Krajewski and Parrinello,27 formalized by Kühne et al.,28

and rationalized by Dai and Yuan29 before becoming infor-
mally known as the second generation Car-Parrinello molec-
ular dynamics.30 Adopting the principle of Refs. 27 and 28,
ALMO AIMD is chosen to be governed by the Langevin equa-
tion of motion that can be written in terms of the unknown
reference forces

mi r̈iα = f KS
iα (t) − γmi ṙiα + Rγiα(t), (2)

where mi is the mass of atom i, riα is its position along dimen-
sion α, γ is the Langevin scaling factor, and Rγiα(t) is the
stochastic force represented by a zero-mean white Gaussian
noise

〈Rγiα(t)〉 = 0, (3)

〈Rγiα(t)Rγjβ(t ′)〉 = 2kBTγmiδijδαβδ(t − t ′). (4)

The last relation means that, for any value of γ, the damping
and stochastic terms are in perfect balance, and trajectories
generated with Eq. (2) will sample the canonical ensemble
at a specified temperature T.31 In the limit γ → 0, the New-
ton equation is recovered and the microcanonical ensemble is
sampled.

The main assumption of ALMO AIMD is that the error
in the ALMO forces is well approximated by Gaussian noise
R∆iα(t)

δfiα(t) = R∆iα(t) (5)

that obeys

〈R∆iα(t)〉 = 0, (6)

〈R∆iα(t)R∆jβ(t ′)〉 = 2kBT∆miδijδαβδ(t − t ′). (7)

This assumption, shown to be well justified, allows us to
rewrite the Langevin equation using the ALMO forces

mi r̈iα = f ALMO
iα (t) − γmi ṙiα + Rγ+∆

iα (t), (8)

where the two stochastic terms are combined into one
Rγ+∆

iα = Rγiα + R∆iα. The only missing piece in the modified
Langevin equation is the value of ∆, which describes the
strength of the newly introduced stochastic term. This term
compensates for imperfections in ALMO forces and must be
adjusted to re-balance the damping and stochastic components
in ALMO AIMD.

In principle, ∆ can be calculated using the integral of
Eq. (7) averaged over atoms with different mi

∆ = (2kBTmi)
−1

∫ ∞
−∞

1
3
〈δ~fi(0) · δ~fi(τ)〉dτ, (9)

if one can afford computing the reference forces f KS
iα (t) (i.e., Rc

→∞ and εSCF→ 0) for a short representative AIMD trajectory.
In practice, we found (see results below) that this approach
is not sufficiently accurate because the δijδαβ assumption in
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Eq. (7) does not strictly hold. Nevertheless, the integral of
the autocorrelation function (ACF) in Eq. (9) can provide
a reasonable starting value of ∆. The estimated ∆ can be
further fine-tuned in a series of short trial-and-error ALMO
AIMD runs until the average kinetic energy corresponds to
the requested temperature,

〈
1
2 mi ṙ2

i

〉
= 3

2 kBT .
The inherently stochastic approach presented here does

not aim to produce fully time-reversible dynamics for atomic
nuclei. Nevertheless, it is capable to reproduce correct dynam-
ical properties of a system as long as γ is set to a small value
and partially optimized ALMOs remain close to the ground
state resulting in ∆� γ. An alternative approach to perform-
ing microcanonical MO-based LS AIMD would be to combine
ALMO DFT with the extended Lagrangian method described
in Ref. 32. This method has been shown to conserve the total
energy in LS DM-based AIMD simulations.33

ALMO AIMD was implemented in CP2K, an open source
materials modeling package.34 Accuracy and efficiency of
ALMO AIMD was tested using liquid water as an example.
This system is challenging because intermolecular electron
delocalization is a critical component of hydrogen bonding and
must be described correctly to reproduce static and dynam-
ical properties of liquid water. A periodic cell containing
125 molecules was simulated for 30 ps at T = 298 K and a
constant density of 1.01 g cm−3. The initial configurations
of the water boxes were created by equilibrating the system
for 20 ps using fully converged orbitals. The Ricci-Ciccotti
algorithm35 was used to integrate the Langevin equation (see
the supplementary material). We found that γ = 10−3 fs−1 is
large enough to thermostat the system efficiently and small
enough not to significantly affect dynamical properties of
liquid water. In the dual Gaussian and plane-wave scheme
implemented in CP2K,36 the TZV2P basis set was used to rep-
resent molecular orbitals, and a plane-wave cutoff of 320 Ry
was used to represent electron density. The XC energy was
approximated using the dispersion-corrected Perdew-Burke-
Ernzerhof (PBE) functional.37,38 Separable norm-conserving
pseudopotentials were used,39 and the Brillouin zone was sam-
pled at the Γ-point. The predictor of the Kolafa scheme40 was
adopted to localized orbitals28 to generate a highly accurate ini-
tial ALMOs in both SCF stages, which can be brought close
to the ground state with just a few SCF steps of the robust
two-stage optimization procedure.

The reference forces were calculated with fully delocal-
ized electrons using the tightly converged, εSCF = 10−6 a.u.,
orbital transformation (OT) method.41 In ALMO AIMD, the
element-specific cutoff radius for electron delocalization Rc

was set to 1.6 in units of the elements’ van der Waals radii
(vdWR). This localization radius includes approximately two
coordination shells of an average water molecule and was
shown to reproduce the reference radial distribution function
(RDF) perfectly in Monte Carlo simulations.8 To check the
ability of the R∆(t) term to compensate for imperfections in
ALMO forces, we varied εSCF between tight 10−6 a.u. and
loose 10−2 a.u.

Even with εSCF = 10−2, the simulation is stable
with the correct average temperature and perfect Maxwell-
Boltzmann distribution [Fig. 1(b)].∆was initially estimated at
2 × 10−5 fs−1 using Eq. (9) and then refined heuristically to

FIG. 1. Calculated properties of water using ALMO AIMD with
εSCF = 10−2 a.u. and Rc = 1.6 vdWR (red line) and fully converged OT
reference (black line). (a) RDF, (b) kinetic energy distribution (the gray curve
shows the theoretical Maxwell-Boltzmann distribution), and (c) IR spectrum.

6 × 10−5 fs−1. We found that it is easier to optimize ∆ when
γ is set to zero because of reduced noise in the trial runs.
Analysis of δ~fi(t) shows that the error indeed resembles Gaus-
sian white noise. The mean of the error is zero [black line in
Fig. 2(a)]. Its ACF decays rapidly [Fig. 2(c)] so that the errors
can be considered uncorrelated on time scale of 50 fs. Thus
the main assumption behind our approach to ALMO AIMD is
justified for liquid water. We established that the main source
of error in forces for this system is the loose convergence
criterion and not the finite Rc: fully converged ALMO SCF cal-
culations remove the oscillating component of δf [Fig. 2(b)].
We also verified that the ALMO forces converge to the refer-
ence forces in the limit Rc →∞ (Figure S7 in supplementary
material).

To test the accuracy of ALMO AIMD, we used the tra-
jectory analyzer TRAVIS42 to compute the infrared (IR) spec-
trum, RDF, and diffusion coefficient of liquid water from both
the ALMO trajectory (εSCF = 10−2 a.u. and Rc = 1.6 vdWR)
and from the reference trajectory. The diffusion coefficients
DOT = 1.7(1) × 10−10 and DALMO = 1.8(4) × 10−10 and RDFs
[Fig. 1(a)] are in good agreement. The quality of the ALMO

FIG. 2. The red line is the Euclidean norm of the instantaneous error
〈‖δ~fi(t)‖〉i, the black line is the magnitude of the time average of the instan-
taneous error vector, and the green line is the time average of the red line.
(a) Rc = 1.6 vdWR and εSCF = 10−2 a.u., (b) Rc = 1.6 vdWR and fully con-
verged ALMO SCF, and (c) Normalized ACF 1

3 〈δ
~fi(t) · δ~fi(t + τ)〉it of the

instantaneous error in panel (a).
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FIG. 3. Timing benchmarks for PBE/TZV2P simulations of liquid water on
256 compute cores. For ALMO methods, Rc = 1.6 vdWR. Cyan lines represent
perfect cubic scaling, whereas gray lines represent perfect linear scaling.

IR spectrum [Fig. 1(c)] is good despite minor errors in the
intensity of the OH stretching mode, which is sensitive to the
precise positions of the centers of localized orbitals. These
stringent tests show that despite noticeable errors in the ALMO
forces [Fig. 2(a)], the compensating R∆(t) term in the modi-
fied Langevin equation makes it possible to recover atomic
dynamics properly. We would like to note that ALMO AIMD
could not be stabilized with ∆ = 0. Neither were we able to
find any values of ∆ that stabilize trajectories generated using
perturbative versions of ALMO DFT.8

To demonstrate the computational efficiency of ALMO
AIMD, we compared the average wall-time per MD step for
a variety of methods in Fig. 3. It is important to emphasize
that the comparison is performed for a three-dimensional con-
densed phase system described with an accurate triple-ζ basis
set with polarized functions—a particularly challenging case
for DM-based LS methods. ALMO AIMD shows clear LS
behavior for all values of εSCF, even for medium-size systems.
While the second generation Car-Parrinello method decreases
the computational overhead of the cubically-scaling AIMD
for small systems,28 ALMO AIMD exploits the modified
Langevin concept to substantially reduce the simulation cost
for systems of all sizes. The crossover point between ALMO
AIMD and cubically scaling methods lies in the region of
256 molecules—scale routinely accessible with AIMD today.
For comparison, the crossover point between the cubically-
scaling DFT and a representative LS method that computes a
sparse DM as the matrix sign function of the effective Hamil-
tonian6 is expected to lie well above 10 000 water molecules
[Fig. 5(a) and Fig. S5 of the supplementary material in
Ref. 8].

Weak scaling benchmarks for very large systems show
(Fig. 4) that localized orbitals are naturally suited for parallel
execution: LS is retained for a wide range of systems and com-
pute cores. We were able to successfully simulate systems as
large as ∼105 atoms within reasonable wall-clock time using
only moderate number of compute cores—an impressive feat
for AIMD considering that accurate molecular orbitals and the
idempotent DM are computed on each step. The horizontal line
in Fig. 4 is shown as a rough guide to time and length scales
accessible in a fixed wall-clock time given various computa-
tional resources. It indicates that ALMO AIMD can extend
the range of routine simulations to ∼104 atoms on modern
high-performance computing platforms.

FIG. 4. Weak scalability benchmarks for PBE/TZV2P ALMO AIMD with
Rc = 1.6 vdWR and εSCF = 10−2 a.u. Dashed gray lines connect systems
simulated on the same number of cores to confirm LS behavior.

To summarize, we demonstrated—for the first time—that
compact localized orbitals can be utilized to perform accurate
and efficient LS AIMD without concomitant optimization of
the DM. High efficiency of the presented method is achieved
without sacrificing accuracy with a combination of two tech-
niques: (1) on-the-fly calculation of approximate forces with-
out lengthy self-consistent optimization of localized orbitals
and (2) integration of a modified Langevin equation of motion
that is fine-tuned to retain stable dynamics even with imperfect
forces. By obviating the optimization of the DM, the method
remains remarkably efficient even with large localized basis
sets. Using liquid water as an example, we showed that the
new approach enables simulations of molecular systems on
previously inaccessible length scales. The developed method
will have a significant impact on modeling of complex molec-
ular systems (e.g., interfaces or nuclei) making completely
new phenomena accessible to AIMD. A generalization of the
methodology to systems of strongly interacting atoms (e.g.,
covalent crystals) is underway.

See supplementary material for the detailed description
of ALMO AIMD algorithms and dependence of the atomic
forces on the electron localization radius.
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