
Graphite-diamond phase coexistence study employing a neural-network mapping of the
ab initio potential energy surface

Rustam Z. Khaliullin,1,* Hagai Eshet,1 Thomas D. Kühne,1,2 Jörg Behler,3 and Michele Parrinello1

1Department of Chemistry and Applied Biosciences, ETH Zürich, USI Campus, via G. Buffi 13, 6900 Lugano, Switzerland
2Department of Physics and Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

3Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
�Received 17 February 2010; published 18 March 2010�

An interatomic potential for the diamond and graphite phases of carbon has been created using a neural-
network �NN� representation of the ab initio potential energy surface. The NN potential combines the accuracy
of a first-principles description of both phases with the efficiency of empirical force fields and allows one to
perform a molecular-dynamics study, of ab initio quality, of the thermodynamics of graphite-diamond coex-
istence. Good agreement between the experimental and calculated coexistence curves is achieved if nuclear
quantum effects are included in the simulation.
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The ability of carbon atoms to form strong chemical
bonds with a variety of coordination numbers leads to a re-
markably wide range of physical properties of the condensed
phases of carbon. The diamond phase is a three-dimensional
network of fourfold coordinated atoms characterized by a
very low electrical conductivity and extreme hardness. Un-
like diamond, the graphite phase is semimetallic and made
up of planes of threefold coordinated atoms. It behaves as a
lubricant because of weak van der Waals �vdW� bonding
between the planes.

In spite of the great fundamental and practical importance
of graphite and diamond the characterization of these phases
and their mutual transformation is far from complete espe-
cially in the region of high pressures and temperatures which
are difficult to access experimentally. Although computer
simulations based on density-functional theory �DFT� pro-
vide a comprehensive framework for modeling a variety of
carbon polymorphs, they become computationally too de-
manding for the generation of long molecular-dynamics
�MD� trajectories for large systems �nanosecond-long trajec-
tories are required to study thermodynamics and mechanism
of phases transitions�. On the other hand, the construction of
accurate and computationally efficient potentials capable of
describing the wide range of interactions in carbon is still a
challenge. Many simple force fields developed for covalent
systems such as the embedded atom method,1 the Stillinger-
Weber approach,2 and the bond-order potential of Tersoff3

have only limited success in modeling carbon phases. More
elaborate potentials such as the Brenner potential,4 the
environment-dependent interaction potential,5 and a family
of long-range carbon bond-order potentials6 significantly im-
prove the description of carbon structures by incorporating
�-bonding effects and vdW interactions. Nevertheless, even
the most sophisticated empirical potentials do not always
give a correct description of all properties or phenomena of
interest.

In the present Rapid Communication, we followed a dif-
ferent approach for modeling solid phases of carbon such as
diamond and graphite. Instead of representing the inter-
atomic interaction energy by an analytic function fitted to
experimental �or ab initio� data we created an accurate map-

ping of the relevant portion of the ab initio potential energy
surface �PES� using a recently developed high-dimensional
neural-network �NN� approach.7 This approach eliminates
the requirement to guess a complicated functional form for
the interatomic potential. Accurate mapping ensures that all
properties determined by the topology of the PES are de-
scribed with an accuracy comparable with that of DFT. Fur-
thermore, PES mapping allows one to examine nuclear quan-
tum effects in MD simulations from first principles whereas
empirical potentials attempt to incorporate such effects
through parameterization. From a computational standpoint,
the NN energies, forces, and stress tensor are evaluated with
the speed of empirical potentials,8,9 thus enabling an MD
study of graphite-diamond coexistence of unprecedented ac-
curacy.

Neural networks have been successfully used to interpo-
late the PES of simple chemical systems for the last
decade.10–14 However, an NN-based method that can be used
to map the high-dimensional PES of bulk systems and large
clusters has been introduced only recently.7–9 This mapping
of the ab initio PES is performed by optimizing NN param-
eters to reproduce the ab initio energies of many thousands
of structures in a training set. The overfitting �i.e., obtaining
a good fit to the training data, but performing less accurately
when making predictions� is controlled by testing the perfor-
mance of the NN for an independent test set not used in the
optimization.

The accuracy of the reference ab initio energies is of para-
mount importance while training the network. It is known
that conventional local- and semilocal density functionals
cannot describe the long-range electron correlations that are
responsible for the vdW interactions between graphite
sheets.15 To account for the dispersion forces in graphite, we
employed the Perdew-Burke-Ernzerhof �PBE� functional in
combination with the dispersion corrected atom centered
pseudopotential �DCACP�,16 which has been shown to per-
form well for graphene sheets and aromatic compounds.16,17

Extensive tests were performed to demonstrate that DCACP
closely reproduces the experimental lattice constants as well
as elastic and vibrational properties of diamond and graphite
�Table I�. The ABINIT package18 was used to perform the ab
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initio calculations. A dense mesh of k-points and a large
plane-wave cutoff of 170 Ry were used for all structures so
as to ensure convergence of the total energy to 1 meV/atom.

The initial fitting of the carbon NN potential was per-
formed on crystal structures that included the zero tempera-
ture and randomly distorted structures of cubic and hexago-
nal diamond, hexagonal and rhombohedral graphite in the
pressure range from −10 to 200 GPa. After the initial train-
ing, the NN was improved self-consistently by iterative rep-
etition of the NN-driven MD simulations, collection of new
structures emerging from the simulations, calculation of the
DFT energies for the physically relevant structures, and re-
finement of the NN. These iterations were performed until
the root-mean-squared error �RMSE� of the new structures
not included in the fit converged to the RMSE of the test set.
After the self-consistent procedure the DFT data set con-
tained �60,000 DFT energies corresponding to more than
700 000 atomic environments. 10% of all structures were
randomly chosen for the test set. The best fit was obtained
for a NN with two hidden layers, each of which contains 25
nodes �the total number of the NN parameters is 1901�. The
RMSE of the training set is 4.0 meV/atom, while the RMSE
of the test set is 4.9 meV/atom. The maximum absolute er-
rors are 41.5 and 46.7 meV/atom for the training and test
sets, respectively. The largest errors are attributed to highly
distorted graphite structures that are accessible only at tem-
peratures of 4000–5000 K. At these high temperatures the
errors are small compared to kBT�340–430 meV so the
quality of the relevant ensemble averages is essentially main-
tained.

To check the accuracy of the NN potential we calculated
lattice constants, stiffness coefficients, and vibrational fre-
quencies for the zero-temperature structures of cubic dia-
mond and hexagonal graphite. The lattice constants were de-
termined by minimization of the NN potential energy fitted
using the Murnaghan equation26 in the case of diamond and
by a two-dimensional fourth order polynomial in the case of

graphite. The second-order elastic constants were calculated
by fitting the energy as a function of an appropriate cell
distortion to a parabola27,28 while vibrational frequencies
were obtained by diagonalizing the dynamical matrix. The
computed quantities are summarized and compared with
DFT and experimental values in Table I. The NN accurately
reproduces DFT results for structural, elastic and vibrational
properties of diamond.42 All properties of graphite deter-
mined by the strong in-plane interactions �a0, c11, c12, and
�ZO� are also described well by the NN. However, the rela-
tive error between DFT and NN values is generally larger for
the properties determined by weak interplanar interactions
�e.g., c33, c44, and c13�. Nevertheless, the NN description of
one of the most important structural characteristics of
graphite—the interlayer distance—is remarkably accurate for
a wide range of pressures �Fig. 1�.

The graphite-diamond coexistence line was determined by
locating points of equal chemical potential in the P-T plane.
This was done in three steps. First, we calculated the Helm-
holz free energy FNN�T0 ,�0� of both phases at T0=2000 K
by thermodynamic integration using Einstein crystals as the
reference systems31

TABLE I. Structural, elastic, and vibrational properties of graphite and diamond.

Hex. graphite

Lattice const.
�Å�

Elastic constants
�GPa�

Freq.
�cm−1�

a0 c0 B0 c11 c12 c33 c44 c13 �ZO �LO/TO

PBEa 2.461 8.712 2.4 1240a 2.4 −0.5 1561,1561 881

PBE, DCACP 2.467 6.815 37 1069 162 40 5 −4 1553,1573 870

NN 2.467 6.688 48 1080 179 52 7 0 1527,1530 834

Exp.b 2.461 6.705 36.4�1.1 1060�16 180�20 36.5�1 4.0�0.4 15�5 1575 861

Cub. diamond a0 B0 c11 c12 c44 �O

PBEa 3.568 432 1060 125 562 1289

PBE, DCACP 3.570 439 1056 130 567 1292

NN 3.569 434 1016 142 580 1295

Exp.c 3.567 442 1076.4�0.2 125.2�2.3 577.4�1.4 1332

aResults of calculations with the standard Vanderbilt ultrasoft PP from Ref. 15; c11+c12 value from Ref. 15.
bLattice constants from Ref. 19, elastic constants from Ref. 20, and vibrational frequencies from Refs. 21 and 22.
cLattice constants from Ref. 23, elastic constants from Ref. 24, and vibrational frequency from Ref. 25.
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FIG. 1. NN prediction and experimental data �Ref. 29� for the c0

lattice parameter of hexagonal graphite as a function of pressure.
T=295 K. The NN values are computed from constant-pressure
MD simulations with a quantum Langevin thermostat �Ref. 30�.
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FNN�T0,�0� = FEIN�T0,�0� + �
0

1 � �U�

��
�

�

d� , �1�

where U�=�UNN+ �1−��UEIN.
In the next step, the chemical potentials were evaluated by

integrating the free energy as a function of density starting
from �0 �Ref. 32�,

�NN�T0,�� =
1

N
FNN�T0,�0� +

a�T0�
�0

+ b�T0�ln
�

�0
+ b�T0�

+ c�T0��2� − �0� . �2�

Parameters a�T0�, b�T0�, and c�T0� were determined by fit-
ting the pressure dependence on density using

P�T0,�� = a�T0� + b�T0�� + c�T0��2. �3�

Finally, the coexistence line was traced by integrating the
Clausius-Clapeyron equation dP

dT = ��H�
T��V� using the predictor-

corrector scheme of Kofke.33

It is important to emphasize that long MD trajectories are
essential to obtain statistically accurate results for all three
steps. Furthermore, it is desirable to perform simulations us-
ing large systems as finite-size effects can introduce signifi-
cant errors to the free energies evaluated by thermodynamic
integration.34 Hence, direct ab initio MD simulations for
large systems �especially with a large plane-wave cutoff and
a dense k-point mesh� are computationally very demanding
for the evaluation of free energies, whereas, the NN provides
an affordable and accurate method to determine the coexist-
ence line.

NN-driven MD simulations were performed for 512 at-
oms of cubic diamond �cubic box, �0=173.94 nm−3� and
960 atoms of hexagonal graphite �four layers, cell size ratio
2.024:2.104:1, �0=120.02 nm−3�. The temperature was con-
trolled using a colored-noise Langevin thermostat that was
tuned to provide the optimum sampling efficiency over all
relevant vibrational modes.35 The time step was set to 0.7 fs.
The integral in Eq. �1� was evaluated numerically by the
Gauss-Legendre quadrature with 20 points. At each value of
�, the average value of the integrand and its statistical error
were obtained from a 133 ps trajectory. State points along the
2000 K isotherm were obtained from NPT simulations gov-
erned by Nosé-Hoover equations of motion with Langevin
noise on the particle and cell velocities.35,36 Averaging over a
95 ps trajectory was performed for each state point. The
predictor-corrector algorithm was iterated until pressure had
converged to less than 0.05 GPa that required 2–3 iterations
of 50 ps each. The total simulation time required to obtain
the coexistence line totals �5 ns for each phase clearly
demonstrating the advantage of the NN approach in compari-
son with the direct ab initio simulation.

We performed two separate calculations of the coexist-
ence line. In the first simulation, the Langevin thermostat
was tuned to reproduce quantum-mechanical behavior of car-
bon nuclei using a recently published method of Ceriotti et
al.30 In the second simulation, the thermostat was fitted to
obtain classical behavior of the nuclei.

Two graphite-diamond coexistence lines determined as
the intersection of the �NN�T , P���� planes in classical and

quantum simulations are shown in Fig. 2. We verified that
the coexistence lines are calculated correctly by independent
thermodynamic integration at T0=300 K and T0=1000 K
�indicated by red points in Fig. 2�. Comparison with the ex-
perimental data37,38 in the temperature interval from 1500 to
3000 K reveals that the NN overestimates the transition pres-
sure by approximately 3.5 GPa. Nevertheless, the slope of
the calculated coexistence line �2.8�106 Pa K−1� agrees
very well with the experimental value �2.7–3.1
�106 Pa K−1�.37,38

At temperatures below 1000 K, the quantum coexistence
curve flattens out and deviates from the straight classical line
�Fig. 2�. At 0 K, the quantum transition pressure is 0.8 GPa
higher than the corresponding classical value. Analysis of
our data shows that this shift is a direct consequence of the
diamond zero-point energy being larger than that of graphite.
The shape of the calculated quantum coexistence line closely
resembles the shape of the Berman-Simon curve obtained
from experimental thermodynamic properties of diamond
and graphite.37,39 The 0 K transition pressure predicted by
both the NN and PBE functional �4.7 GPa� is again overes-
timated by 3.3 GPa relative to the experimental value �1.4
GPa�.37,39 Based on this observation we infer that the posi-
tive 3.3 GPa shift of the calculated coexistence line is caused
by inaccuracies of the ab initio PES and not by errors in the
NN mapping. This systematic shift is a result of the inability
of the PBE functional to capture precisely the small differ-
ence between the energies of graphite and diamond �i.e.,
�Ud-g

PBE=68 meV /atom is smaller than the average error of
the PBE functional, 160 meV/atom40�. Despite this error, the
PBE functional and NN predict the zero-point energy contri-
butions for diamond and graphite correctly and, therefore,
accurately describe the flattening of the coexistence line at
the low temperatures. The inset of Fig. 2 shows that the
Berman-Simon curve,39 the coexistence line of Bundy37 and
the experimental estimate of the graphite-diamond-liquid
triple point41 are well reproduced in our calculations if the
quantum NN curve is shifted down by 3.3 GPa to match the
experimental 0 K transition pressure.

In the 1000–3000 K range, the coexistence line predicted
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FIG. 2. �Color� Graphite-diamond coexistence line. NN results
are denoted by red, LCBOP+ data by blue, and experimental data
by green color, respectively.
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with the LCPOBI+ potential32 lies �2 GPa closer to the
experimental line than the NN curve. However, the
LCBOPI+ potential incorrectly predicts an increase in the
slope of the line below 1000 and above 3000 K. As a con-
sequence, the LCBOPI+ triple point lies �4 GPa above the
experimental value even though the 0 K transition pressure is
correctly estimated by LCBOPI+.

In summary, we have demonstrated that despite the dis-
tinct nature of bonding in graphite and diamond the newly
developed NN potential predicts numerous properties of both
phases in quantitative agreement with DFT and experimental
data. The computational efficiency of the NN potential en-
ables an MD study of graphite-diamond coexistence of un-
precedented accuracy. Comparison of the coexistence lines
determined in quantum and classical simulations has shown

that nuclear quantum effects are responsible for the experi-
mentally observed flattening of the coexistence curve at tem-
peratures below 1000 K. A detailed MD study of the mecha-
nism of the graphite-to-diamond transformation and
refinement of the NN potential so as to include high-pressure
solid and liquid phases of carbon are useful follow-on devel-
opments of this work.
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