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ABSTRACT: Despite recent progress in linear scaling (LS) density function theory
(DFT), the computational cost of the existing LS methods remains too high for a
widespread adoption at present. In this work, we exploit nonorthogonal localized
molecular orbitals to develop a series of LS methods for molecular systems with a low
computational overhead. High efficiency of the proposed methods is achieved with a
new robust two-stage variational procedure or by replacing the optimization
altogether with an accurate nonself-consistent approach. We demonstrate that, even
for challenging condensed-phase systems, the implemented LS methods are capable
of extending the range of accurate DFT simulations to molecular systems that are an
order of magnitude larger than those previously treated.

I. INTRODUCTION

Intermolecular interactions determine physical and chemical
properties of a broad class of important systems such as liquids,
solutions, and molecular solids. Because of the broad
importance of molecular systems, there is a considerable
interest in developing theoretical approaches for describing
interactions of weakly bonded ensembles of molecules.
Simulations based on density functional theory (DFT) are
already playing an important role in computational studies of
gas-phase molecular clusters and condensed-phase systems.1

However, their applicability to large systems is severely limited
by poor scaling of the conventional diagonalization-based
Kohn−Sham (KS) DFT, the computational complexity of
which grows cubically with the number of molecules.
Several alternative methods have been proposed, which

explore the natural sparsity of the one-electron density matrix
(DM)2,3 and are capable of yielding linear scaling (LS) for large
systems.4−11 However, the variational optimization of the DM
is very inefficient for accurate DFT calculations,3,11 which
require many basis functions per atom. Therefore, the
applications of DM-based LS methods have been limited to
minimal-basis tight-binding problems. The optimal basis
variants of the DM methods12−15 designed to address this
issue contract the large basis set into a small number of new
localized basis functions and then optimize the DM in the
contracted basis. Although such methods have been successfully
used for the evaluation of accurate DFT energies of very large
systems,16−19 their application in long simulations is hampered
by the computationally costly optimization of both the
contracted orbitals and the density matrix. From this point of
view, methods based on the direct optimization of localized KS
orbitals20−28 are advantageous because they require only the
occupied orbitals and, thus, involve fewer variational degrees of

freedom than the DM methods. Unfortunately, the progress in
the development of orbital-based LS methods has been
hindered by the inherently difficult convergence of the
localized-orbital optimization.3,21,24,26

Hence, the computational cost of the existing LS
methods3,19,29,30 remains too high to provide a competitive
alternative to the conventional cubic scaling DFT for routine
molecular dynamics (MD) or Monte Carlo (MC) simulations.
In this work, we present a series of efficient LS DFT methods
for molecular systems based on localized nonorthogonal MOs.
To reduce the computational overhead of these methods, we
developed a two-stage variational procedure that exhibits fast
and stable convergence and, thus, overcomes the major obstacle
to practical applications of orbital-based LS DFT. We also show
that, for weakly bonded molecular systems, the second stage of
the variational optimization can be replaced, without an
appreciable loss of accuracy, with an even faster local nonself-
consistent approach. The accuracy and computational perform-
ance of the proposed methods are analyzed using ice and liquid
water as representatives of a broad class of condensed-phase
molecular systemsthe most challenging application for LS
methods.

II. THEORETICAL APPROACH

In the first step, the electrons of a system are logically divided
into nonoverlapping subsets called groups. For molecular
systems, a typical group consists of all electrons of a single
molecule, all atoms of which are referred to as the group’s
centers. Within the DFT, electrons are described by one-
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electron molecular orbitals (MOs) |ψxi⟩, where the indices
indicate that electron i belongs to group x.
In the next step, a localization domain is specified for each

group of electrons. In this work, the localization domain of
group x is chosen as a subset of atom-centered basis orbitals
(AOs) |ϕxμ⟩ of all neighboring molecules. Two molecules are
considered neighbors if there is a pair of their atoms located
within a sum of the element-specific cutoff radii (Rc).
To describe a localization domain in the one-electron Hilbert

space, it is convenient to introduce the following projection
operator:

ϕ ϕ̂ = ̂ = | ⟩ ⟨ |μ
μ ν

ν
†I I Sx x x

x x
x

,
(1)

where Sxμ,xν are matrix elements of the inverse of the AO
overlap submatrix Sxμ,xν = ⟨ϕxμ|ϕxν⟩. Note that, throughout the
paper, summation is implied over orbital indices but not over
group or domain indices.
Finally, locality constraints are imposed on the occupied

MOs of each group by restricting their expansion only to the
AOs of their own domains. This restriction can be expressed
conveniently with a domain projector:

ψ ψ ϕ| ⟩ ≡ ̂ | ⟩ = | ⟩μ
μI Txi x xi x

x
xi (2)

This leads to nonorthogonal MOs, which are localized on their
domains to the same extent as AOs are localized on atoms;
thus, these are called absolutely localized molecular orbitals
(ALMOs).31

By construction, an AO may belong to several localization
domains and, therefore, the Hilbert space spanned by AOs is
partitioned into overlapping subspaces:

∑̂ ≠ ̂I I
x

x
(3)

It has been shown that, in the case of such overlapping
subspaces, a straightforward variational optimization of the
localized orbitals given by eq 2 exhibits extremely slow
convergence,3,21,24,26,32 rendering such an approach impractical
(see Figure 1).

To circumvent the convergence problem, we propose a two-
stage optimization procedure. In the first stage, the localization
radius Rc is set to zero and the variational optimization is
performed for ALMOs expanded only in terms of AOs of their
centers. For this case of nonoverlapping domains, the
optimization can be carried out efficiently and yields zero-
order orbitals |ψxi

0 ⟩. These orbitals represent each molecule’s

electrons polarized by the field of all other molecules. The
intermolecular charge transfer restricted by the Rc = 0
constraint.
In the second stage, Rc is set to a desired finite value and

zero-order orbitals and the corresponding density operator R̂0

are used to construct trial orbitals of the following form:

ψ ψ ψ

ψ ϕ

| ⟩ = | ⟩ + ̂ ̂ − ̂ ̂ ̂ | ⟩

= | ⟩ + ̂ ̂ − ̂ | ⟩μ
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( )
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xi x x xi
x

0 0 0

0 0
(4)

In eq 4, X̂ is a single-electron excitation operator, the matrix
elements of which Xxi

xμ = ⟨ϕxμ|X̂|ψxi
0 ⟩ describe delocalization of

zero-order orbitals into AOs of the neighbors and represent
variational degrees of freedom in the second stage of the
optimization. Operator Ix̂ ensures that orbitals remain
absolutely localized within their domains whereas (I ̂ − R̂0)
restricts the delocalization to the zero-order unoccupied
subspace. Keeping delocalization corrections orthogonal to
zero-order orbitals resolves the problem of slow optimization
observed for unprojected orbitals in eq 2 (see Figure 1).
The importance of keeping the orbitals orthogonal to a

nonoverlapping reference has also been emphasized in ref 33.
The guidelines in ref 33 state that the nonoverlapping reference
regions should be chosen close to the centers of the maximally
localized Wannier functions in the system.33,34 Since these are
not always known a priori, one must rely on chemical intuition
to construct the reference. In contrast, the methods presented
here can be used as a black-box procedure that generates a
variationally optimal zero-order state.
The optimization of the projected trial orbitals is performed

to minimize either the KS energy or a simplified energy
functional with the fixed zero-order KS Hamiltonian Ĥ0:

= ̂ − ̂ ̂E R R HTr[( ) ]c 0 0
(5)

The former approach is variational and will be referred to as
ALMO SCF. The latter method, designated as ALMO(X),
follows the Harris approach to molecular systems,35 in which
the Hamiltonian and the occupied orbitals are not updated to
reach self-consistency. In ALMO(X), the final energy is
obtained as the corrected zero-order energy:

= +E E Emin
X

c0
(6)

Furthermore, since typical interactions between molecules are
weak, an accurate density R̂ can be obtained efficiently using a
noniterative procedure (see eq 5). Inspired by an early work on
localized MOs,31 we propose to construct R̂ from the lowest
eigenvectors of the locally projected zero-order KS Hamil-
tonians, which are constructed and diagonalized for each
domain:

̂ = ̂ − ̂ + ̂ ̂ ̂ − ̂ + ̂†H I R R H I R R( ) ( )x x x
LP 0 0 0 0 0

(7)

where R̂x
0 = |ψ0

xi⟩ ⟨ψxi
0 | is a non-Hermitian equivalent of the local

density operator.31,36 In this approach, further denoted as
ALMO(D), the final energy is obtained as E = E0 + Ec.
It is important to note that the presented logical partitioning

with the subsequent construction of localized MOs is a rather
general approach used in a large number of electronic structure
theories, which are collectively known as fragmentation
methods.37 These methods vary greatly in how the partitioning
and recombination are performed and, therefore, differ in
accuracy and computational cost. We would like to emphasize

Figure 1. Maximum norm of the energy gradient in the second-stage
PCG optimization. The test is performed with the BLYP XC
functional and TZV2P basis set for a system of 64 water molecules.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400595k | J. Chem. Theory Comput. 2013, 9, 4421−44274422



that, in our approach, a proper quantum mechanical description
of the entire system is constructed in the form of the total
idempotent density matrix:

∑ ψ ψ̂ = | ⟩⟨ |R
x

xi
xi

(8)

This approach provides the most rigorous description of the
electronic structure.

III. IMPLEMENTATION
All newly proposed methods were implemented in the CP2K
package,38 which relies on the mixed Gaussian and plane wave
(GPW) representation of the electronic degrees of freedom.39

The GPW approach makes CP2K uniquely suited for orbital-
based LS methods, because the localized Gaussian AOs provide
an accurate representation for localized MOs with just a few
basis functions, whereas the use of plane waves ensures a fast
LS construction of the KS Hamiltonian for large systems.
For variational optimization of zero-order orbitals, we

implemented a parallel version of the previously developed
DIIS-accelerated SCF MI procedure.36 SCF MI is based on the
diagonalization of the locally projected Hamiltonian subma-
trices, the construction of which become LS when the KS and
AO overlap matrices are sparse (see ref 36 for details).
A preconditioned conjugate-gradient (PCG) procedure was

implemented to find the optimal orbitals in the second stage of
the ALMO SCF and ALMO(X) methods. The gradient and
preconditioner are expressed as follows:

ϕ ψ∂
∂

= ⟨ | ̂ − ̂ ̂ ̂ − ̂ ̂ | ⟩μ μ
E

X
I R I I R H( ) ( )

xi
x x x n

xi0

(9)

ϕ ϕ= ⟨ | ̂ − ̂ ̂ ̂ + ̂ ̂ ̂ − ̂ | ⟩μ ν μ νP I R I I H I I R( ) ( ) ( )x x x x x x,
0 0 0

(10)

Here, Ĥn is updated on every iteration for ALMO SCF or
remains fixed to Ĥ0 for ALMO(X). As shown in Figure 1 the
PCG optimization converges rapidly if the trial orbitals are
represented by eq 4. In contrast, it is difficult to achieve
convergence for the unprojected localized MOs given by eq 2.
An important consequence of the ALMO constraints is that

both the gradient and the preconditioner are represented by the
submatrices confined to their domains. The size of domains is
determined only by Rc and does not change with the number of
molecules. Therefore, the computational cost of the PCG
optimization exhibits a linear growth in the limit of large
systems.
Special care was taken to reduce the cost of evaluating

matrices in eqs 9 and 10 for systems that are too small to
exhibit sparsity. To this end, the density matrix was expressed
in terms of a smaller ALMO coefficient matrix and the order of
matrix multiplications was chosen to avoid steps that scale
cubically with the size of the AO basis set. This approach
allowed us to reduce greatly the computational overhead of the
LS algorithm for large AO basis sets.
In ALMO(D), the construction of the locally projected KS

matrix can be performed as described in the previous work.36

Although ref 36 involves nonorthogonal MOs localized strictly
on their molecules, it can be shown31 that the same algorithm is
applicable to the case of overlapping domains. The
diagonalization of the locally projected KS matrices is done
independently for each domain maintaining the LS behavior of
the method.

It is important to note that the construction of the
biorthogonal occupied orbitals |ψxi⟩ requires the inversion of
the ALMO overlap matrix. Although the size of this matrix is
small and independent of the size of the AO basis set, it is not
confined to individual domains. This inversion was carried out
using the iterative Hotelling method40 that is based entirely on
matrix multiplications and is LS for large sparse matrices.
All parallel sparse matrix multiplications were performed with

the DBCSR library implemented in CP2K and briefly described
elsewhere.11

IV. RESULTS AND DISCUSSION

Accuracy. There are several types of error introduced in the
proposed ALMO methods. First, the error due the localization
constraints imposed by operator Ix̂ is present in all ALMO
methods. Second, the non-self-consistent treatment of electron
delocalization over neighbors introduces additional errors in
ALMO(X) and ALMO(D).
To assess the accuracy of the new methods, we calculated the

energies for 100 decorrelated snapshots collected from a 10 ps
MD simulation of liquid water performed at constant
temperature (300 K) and density (0.9966 g/cm3) with the
conventional DFT. Molecular orbitals were represented by a
triple-ζ Gaussian basis set with two sets of polarization
functions (TZV2P): this was a smallest basis sufficient for an
accurate description of liquid water.41 A cutoff of 400 Ry was
used to describe the electron density. The exchange-correlation
(XC) energy was approximated with the BLYP functional.42,43

The Brillouin zone was sampled at the Γ-point and separable
norm-conserving pseudo-potentials were used to describe the
interactions between the valence electrons and the ionic
cores.44 The periodic simulation cell contained 64 water
molecules.
Energy errors were calculated relative to the conventional KS

energies ΔE ≡ EALMO − EKS. Their distribution for the 100
snapshots were characterized by the mean error ⟨ΔE⟩ and
standard deviation σ = (⟨ΔE − ⟨ΔE⟩⟩)1/2, which are shown in
Figure 1 as a function of the localization radius Rc. Note that
the element-specific cutoff radii will be further expressed in
units of the elements’ van der Waals radii (vdWR).
The mean error in Figure 2b demonstrates that non-self-

consistent methods can give energies that are lower than the
variational values. For simulations, in which coordination
number of molecules does not change drastically, the mean
error represents a constant shift of the potential energy surface
and, on average, does not affect the behavior of molecules. In
such cases, the quality of ALMO methods can judged by σ
(Figure 2c).
For liquid water, restricting electrons to their own molecules

(i.e., Rc = 0) results in the unacceptable error with ⟨ΔE⟩ = 32.1
and σ = 1.3 kJ/mol per molecule. However, allowing electron
delocalization over just the first coordination shell (Rc = 1.2
vdWR; see Figure 2a) produces rather accurate results with σ ≈
0.05 kJ/mol per molecule. Electron delocalization over more
distant neighbors decreases the localization error even further.
For instance, if electron delocalization is allowed over the first
and second coordination shells (Rc ≈ 1.6 vdWR), the mean
error per hydrogen bond decreases to <1% of its total strength.
For this cutoff radius, σ reaches the asymptotic value of ∼0.02
kJ/mol for the non-SCF ALMO(X) and ALMO(D) methods.
It is important to note that σ drops to zero as Rc→ ∞ for the
self-consistent ALMO SCF method.
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To estimate the effect of these errors on the structural
properties of water, we performed MC simulations45 using the
ALMO methods and calculated the radial distribution functions
(RDFs). MC simulations were used in this case because the
atomic forces of the ALMO energies required for MD
simulations have not been implemented yet. The accurate
settings of the MD simulation described above were retained in
the MC simulations. In each simulation, 45 000 rotational and
translational MC moves were performed. To increase the
acceptance ratio, each move was presampled using TIP3P
potential.46 For this reason, the intramolecular OH distances
and HOH angle of water molecules were fixed throughout the
simulation to their TIP3P values of 0.9572 Å and 104.52°,
respectively.
Figure 3 shows that the oxygen−oxygen RDF calculated with

ALMO(D) converge rapidly to the reference curve with
increase of Rc (see Figure S1 in the Supporting Information
for a comparison of the RDFs for all ALMO methods). For Rc
= 1.2 vdWR, the RDF deviates only slightly from the reference
in the region of large oxygen−oxygen distances. For Rc = 1.6
vdWR, the error of the ALMO(D) description of the RDF lies
within the statistical error of the simulation.
Computational Efficiency. The LS behavior of the ALMO

methods applied to hexagonal ice can be clearly seen in Figure
4. The LS regime is achieved at as few as 1000 water molecules
with a rather accurate representation of AOs (TZV2P) and
MOs (Rc = 1.6 vdWR).

The noniterative ALMO(D) method is the most efficient
(i.e., has the lowest prefactor) among the newly proposed
methods. The difference in performance of the iterative
ALMO(X) and ALMO SCF schemes comes from the repetitive
re-evaluation of the KS matrix and increased number of
iterations in the latter more accurate variational method.
Figures S2 and S3 in the Supporting Information shows that
the LS behavior is retained for larger systems.
It is worth noting that high efficiency of the ALMO approach

relies on the LS construction of the KS matrix, which is
performed in the reciprocal space using plane waves.39

Asymptotically, the KS build contributes 25%−30% to the
total time (see Figure S4 in the Supporting Information).
To demonstrate the computational efficiency of the ALMO

methods, their performance is compared to that of the orbital
transformation (OT) approach.47,48 OT is a highly efficient and
well-optimized SCF algorithm that performs PCG optimization
of the delocalized occupied MOs. Matrix multiplication of the
sparse Hamiltonian and AO overlap matrices with the dense
representation of delocalized MOs is the most expensive
computational step of OT SCF for systems considered here.
Since it scales quadratically with the number of molecules, the
contribution of the cubic-scaling Cholesky inversion of the
preconditioner increases as the size of the system grows (e.g., it
reaches 23% for 4096 water molecules). This results in the
intermediate quadratic-cubic scaling behavior of the OT SCF
curve in Figure 5a. It should be noted that, using a sparse LS
Cholesky inversion does not provide any advantages in our
tests, because, for large basis sets such as TZV2P, the inverted
matrices remain dense, even for systems containing many
thousands of water molecules. For larger systems, OT SCF

Figure 2. Analysis of the accuracy of the ALMO methods for liquid
water: (a) dependence of the average number of neighbors on the
localization radius; (b) dependence of the mean error per molecule
⟨ΔE⟩ on the localization radius (the error bars show the standard
deviation); and (c) dependence of the standard deviation σ per
molecule on the localization radius. Calculations were performed with
the BLYP XC functional and the TZV2P basis set.

Figure 3. Oxygen−oxygen radial distribution functions for liquid
water. Obtained from Monte Carlo simulations performed with the
BLYP XC functional and the TZV2P basis set for 64 water molecules.

Figure 4. Timing benchmarks for the energy evaluation of hexagonal
ice. Energies were obtained with the BLYP XC functional and TZV2P
basis set on 256 cores. The localization radius was set to Rc = 1.6
vdWR.
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becomes inferior to a DM-based LS method discussed below. It
is important to note that, for comparison purposes, the ALMO
methods, OT SCF, and the DM-based method use the same
values of all common parameters (e.g., cutoff energies, grid
screening thresholds, convergence targets).
Timing benchmarks for the energy evaluation of liquid water

(Figure 5a) show that the ALMO methods are more efficient
than OT SCF, even for systems of moderate size. For systems
containing 1000 water molecules, ALMO(D) is more than an
order of magnitude faster then the conventional SCF
optimization (Figure 5b). Although the ALMO methods are
not yet perfectly LS for 4000 molecules (compare to the case of
the lower-density hexagonal ice above), the speed-ups reach an
impressive 2 orders of magnitude for ALMO(D) and a factor of
∼25 for ALMO SCF for this system.
It is instructive to compare the computational cost of the

ALMO methods to that of the LS approaches that rely on the

sparsity of the DM.4−11 As a representative of this class, we
used a LS method that performs a variational optimization of
the DM computing it as the matrix sign function of the effective
Hamiltonian.11 Unlike the ALMO methods, this approach does
not require a prescribed sparsity pattern and, therefore,
reproduces the KS energies exactly. However, for extended
basis sets such as TZV2P, the matrices in the DM-based
methods become sufficiently sparse only for large systems
containing ∼10 000 water molecules (see the DM SCF curve in
Figure 5a and Figure S5 in the Supporting Information). For
smaller systems (i.e., the dense matrix regime), any DM
method is unlikely to surpass the efficiency of OT SCF, let
alone ALMO SCF. The reason for this is that OT SCF operates
with smaller N × M matrices instead of N × N matrices, where
N is basis set size andM is the number of occupied orbitals. For
example, N = 10 × M for water and TZV2P, which explains the
difference between the OT SCF and DM SCF curves in Figure
5. Given this large computational overhead, we conclude that
all DM-based methods are expected to be significantly slower
than the approximate ALMO methods for any reasonably
accurate basis set.
Figure 5c shows how the performance of the ALMO

methods changes with Rc that controls the size of localization
domains. Domain operations (e.g., the inversion of the domain
preconditioners, the diagonalization of the locally projected
Hamiltonians) are currently performed with dense matrix
routines, the computational cost of which grows cubically with
the size of a domain. However, these routines do not
significantly affect the overall performance of the ALMO
methods for the physically and computationally reasonable
values of R. For large molecules and large domains, these
routines can, in principle, be replaced with their LS equivalents.
Finally, we estimated the maximum system size, for which

ALMO-based MD and MC simulations can be performed on
modern computer platforms with routine access to ∼103
compute cores. We used hexagonal ice as an example and
assumed that the wall-clock time per simulation step should not
exceed the generally accepted upper bound of 100 s. The wall-
clock time was measured for 10 SCF iterations. This represents
a typical number of iterations required to converge wave
functions from an accurate initial guess, which is normally
generated by extrapolation form the previous simulation steps.
Figure 6 shows that, because of good parallel scalability of the
ALMO routines in CP2K, the wall-clock time per simulation
step can be reduced below 100 s for systems containing several
thousands of water molecules. For comparison, the cubic
scaling of OT SCF makes calculations prohibitively expensive
for systems containing more than several hundreds of
molecules (Figure 6). This estimate roughly coincides with
the size of the state-of-the-art 384-molecule simulations
performed with OT SCF recently.49 Thus, the newly proposed
ALMO methods are capable of extending the range of accurate
DFT simulations to molecular systems that are an order of
magnitude larger than those treated with the conventional DFT
methods.
It is important to mention that the wall-clock time cannot

always be reduced to the 100-s mark by increasing the number
of compute cores. The main reason for this is the deteriorating
parallel efficiency with an excessively large number of cores.
This effect, common to all electronic structure codes, is obvious
in Figure 6: for a fixed system size, doubling the number of
cores does not double the efficiency of the calculations. This
effect is even more pronounced for a larger number of cores,

Figure 5. Timing benchmarks for the energy evaluation of liquid
water. Energies were obtained with the BLYP XC functional and the
TZV2P basis set on 256 cores. (a) Wall time required for the energy
evaluation with the localization radius of 1.6 vdWR. (The gray dashed
lines show perfect LS, whereas the cyan dashed lines mark perfect
cubic scaling; DM SCF refers to a DM-based algorithm implemented
in CP2K, the asymptotic LS behavior of which is better seen for the
DZVP basis set calculations presented in Figure S5 in the Supporting
Information.) (b) Speed-ups for the localization radius of 1.6 vdWR,
relative to OT SCF. (c) Speed-ups relative to OT SCF for 4096 water
molecules.
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which are necessary to treat bigger systems (see Figure S3 in
the Supporting Information). Despite this limitation, the low
computational overhead of the developed theoretical approach
enables us to reach a critical system size, from which a stable
linear growth is possible in the near future when more efficient
parallel libraries for matrix multiplication and/or faster
intercore communication hardware become available.

V. CONCLUSIONS
We proposed a series of perturbation and variational linear
scaling (LS) methods for molecular systems based on
nonorthogonal molecular orbitals (MOs) with predetermined
locality constraints. For the variational methods, a newly
developed two-stage optimization procedure circumvents the
long-standing problem of slow optimization of localized MOs
and ensures fast and stable convergence of the self-consistent
field (SCF) procedure. Using liquid water as an example, we
showed that substantial computational savings are possible in
the new approaches with a negligible loss of accuracy for
energies and structural properties. Because of their low
computational overhead, the proposed methods are computa-
tionally superior to the conventional density functional theory
(DFT) algorithms, even for small systems in the pre-LS regime.
The computational advantage of the new methods grows with
the number of molecules as they approach the asymptotic LS
behavior. We demonstrated that an efficient parallel imple-
mentation of the LS algorithms offers a promising route to
extend accurate DFT simulations of molecular systems to
previously inaccessible size scales and time scales.
We would like to note that restricting electrons to local

domains can be used not only for computational advantage but
also to gain an additional physical insight into fundamental
aspects of intermolecular interactions. Energy decomposition
analysis and charge transfer analysis based on localized
MOs50−52 are already widely used to study the nature of
bonding between gas-phase molecules. Our recent work shows
that the ALMO(X) method (where ALMO represents
absolutely localized molecular orbitals) extends the applicability
of such decomposition schemes to condensed-phase sys-
tems.53,54

Although the manuscript presents applications only to
condensed-phase systems, it is important to point out that all

ALMO-based algorithms in the CP2K package are also
applicable to molecular systems with the periodicity in one
and two dimensions, as well as to gas-phase clusters.
Several follow-on research developments appear useful, based

on this work. First, the implemented localization scheme is
based on the sharp cutoff radius that introduces discontinuities
into potential energy surfaces. Therefore, a modification of the
LS methods to smooth localization cutoffs is desirable for
future molecular dynamics (MD) applications. Second, in
principle, the variational ALMO SCF method is suitable for
strongly coupled atoms. However, the currently implemented
algorithms do not converge for such cases, making the ALMO
SCF approach impractical for covalent systems. Third, since the
proposed methods are based on a division of a big system into
smaller subsystems, they might be helpful for combining
different electronic structure methods, such as Møller−Plesset
perturbation theory and DFT, in a single system.
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