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Advances in theory and algorithms for electronic structure calculations must be incorporated into

program packages to enable them to become routinely used by the broader chemical community.

This work reviews advances made over the past five years or so that constitute the major

improvements contained in a new release of the Q-Chem quantum chemistry package, together

with illustrative timings and applications. Specific developments discussed include fast methods

for density functional theory calculations, linear scaling evaluation of energies, NMR chemical

shifts and electric properties, fast auxiliary basis function methods for correlated energies and

gradients, equation-of-motion coupled cluster methods for ground and excited states, geminal

wavefunctions, embedding methods and techniques for exploring potential energy surfaces.

1. Introduction

Here we describe recent developments in molecular electronic

structure models and algorithms, by a large loosely connected

team of scientists, who contribute to the Q-Chem program

package. This introduction sets the stage for discussing these

developments, by first giving a short perspective on the present

status of computational quantum chemistry, and the key

issues it faces today. We begin with a general overview of

the goals of computational quantum chemistry and then

reprise the overall strategy that is commonly adopted at the

moment to realize those goals. At this stage, it is possible to

identify both current successes, and some of the challenges.

These challenges cross several scientific boundaries, from

electronic structure theory itself, which bridges theoretical

chemistry and molecular physics, towards applied mathe-

matics and computer science. We then turn to discussing

specific developments in the body of the paper.

1.1 Context

Molecular electronic structure theory has as its goal the

prediction of molecular structure and properties by solving

the equations of quantum mechanics from first principles—

or ‘‘ab initio’’. This is done within the Born–Oppenheimer

separation, where the electronic structure problem is to solve

the time-independent Schrödinger equation for the electrons,

in the field of fixed nuclear charges at positions RA, possibly

with external applied electric and/or magnetic fields. The

eigenvalues Ei(RA) of the electronic Schrödinger equation

define the potential energy surface of the ground state (i =

0) and the electronic excited states (i > 0), respectively.
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‘‘Walking’’ on the potential surfaces allows one to characterize

stationary points as either stable structures (local minima) or

transition structures (saddle points), etc. Derivatives of Ei with

respect to parameters in the Hamiltonian, such as nuclear

positions or applied fields, yield observable molecular proper-

ties. Through this approach, many of the central properties of

chemistry, such as molecular structure, relative energies of

different structures, and spectroscopic observables may in

principle be predicted directly from quantum mechanics.

While this vision was recognized early on by pioneers such

as Dirac1 and Lewis,2 to name only two, it was, and is,

impossible to realize directly. Analytical solutions are not

available beyond the simplest model systems, such as the

hydrogen atom. Therefore one is compelled to seek numerical

approximations, and it is useful to proceed in two steps. (1)

Make a finite basis expansion to represent functions of one

electron. The basis functions are usually hydrogen-like orbi-

tals, composed of atom-centered fixed linear combinations of

Gaussian functions.3 Plane waves are a commonly used alter-

native in solid state physics and for treating condensed matter.

(2) Make a well-defined approximation for the interactions

between electrons, which is called the electron correlation

model. The use of a complete (and thus infinite-dimensional)

one-electron basis is unfeasible: in practice finite basis sets

must be employed. Exact solution of the time-independent

Schrödinger equation in a finite basis, called full configuration

interaction (FCI), is also unfeasible. It is an exponentially

difficult problem as a function of the number of basis functions

N and electrons n, since NCn possible configurations enter the

wavefunction. FCI calculations are used as benchmarks, and

while the largest ones reported involve literally billions of

terms, they are on molecules that have no more than 10 or

15 electrons.4

To make practical progress, we are then faced with the

necessity of making well-defined approximations for both the

basis expansion, and the treatment of electron–electron corre-

lations. Well-defined approximations, for our purposes, are

those that make no reference to features of specific molecules

beyond what is contained in the molecular Hamiltonian: the

nuclear positions and charges, the total charge and spin state.

Other properties of the atoms may be used to define the basis

set in terms of atomic orbitals. In this approach, the basis set

and correlation treatment define what John Pople termed a

theoretical model chemistry5—a complete computational pre-

scription for simulating chemistry, which will yield predictions

for observables that can be compared against experiment.

After validation against known data, the use of such a model

for predictive purposes becomes possible. After all, the input

to the calculations is just the nuclear positions and charges, the

overall charge and spin multiplicity of the molecule, and the

basis set and correlation model. From this elementary input

one can obtain as output the model potential energy surfaces

Ei(RA) from first principles—an approximate realization of the

vision of Dirac.

Space limits preclude us from digging into the standard

model chemistries at this stage—there are textbooks,6–9 as well

as some general reviews10–12 that play this role—and we will

provide short overviews later in the paper in the context of

specific recent developments. Suffice to say, there are two main

branches to the family tree of quantum chemistry—one based

on Kohn–Sham density functional theory (DFT) where the

central variable is the electron density, r(r),13,14 and the other

based on modeling the wavefunction.6,9 One important point

is that these theoretical chemical models are computationally

tractable on modern computers for molecules (and even

extended systems) of chemical interest. This is partly due to

developments in the theoretical models and algorithms (our

main topic). It is also partly due to the pace of developments in

computing technology. Computer processing power has been

doubling roughly every two years or so since the 1970’s in

accord with Moore’s (empirical) law, and the cost of acquiring

this power has plummeted. Another important point is that

results of useful accuracy are obtained with these standard

models. For example, predictions of molecular structure are

good to roughly 0.01 Å, qualitatively useful predictions of

vibrational, NMR and electronic spectra are possible, and it is

possible to obtain reasonably reliable results for the energy

changes associated with chemical reactions. As a consequence,

computational quantum chemistry has changed over the past

twenty years from a specialist research area to a branch of

chemistry that is usable by chemists at large as a supplement to

(and even occasionally as a replacement for) experiments.

With this transition, program packages that implement

ab initio theoretical model chemistries have become widely

used by a world-wide community of tens of thousands of

chemists. The first programs were produced not long after the

first computers were available, spear-headed by visionaries

such as Frank Boys.15 The first usable programs appeared as

early as 1970, with the introduction of the Gaussian 70

program, the creation of John Pople, and his research students

and postdocs at the time. Since then, there has been steady

growth in terms of both improved and new programs, includ-

ing over ten commercial programs, and at least the same

number of public domain programs, many of which have been

described in scientific reviews and overviews (such as ref.

16–19). This growth has been driven by continued develop-

ments in theory and algorithms, synergistically coupled to

developments in general purpose computing hardware. Broad

acceptance of the usefulness of standard theoretical chemical

models, and the pervasiveness of the software tools has taken

chemical research to the stage where a substantial fraction of

experimental papers employ electronic structure calculations

in addition to synthesis and measurement.

This is the context in which the Q-Chem program package

exists. It is one of the commercial quantum chemistry codes,

where end-users purchase licenses for executable versions of

either Q-Chem itself or for the Spartan modeling package,

which includes Q-Chem as the ‘‘back-end’’ for computational

quantum chemistry calculations. Q-Chem originated as a

splinter group from the Gaussian program collaboration

centered around John Pople’s group, starting in 1993. Key

technical progress in the previous major release was described

in an earlier article,20 with a separate report on parallel

capabilities.21 Since that time much scientific progress has

occurred as discussed below, but there has also been a great

loss. John Pople, 1998 Nobel Laureate for his work on

quantum chemistry, was an active scientific contributor to

Q-Chem and a member of Q-Chem’s Board of Directors, since
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January 2, 1999, when his six-year no-compete obligation to

Gaussian expired. John passed away in March 2004 after a

brief illness at the age of 78, and he is sorely missed. We would

like to dedicate this article to his memory.22–26 Within

Q-Chem, John pressed his career-long vision of new capabil-

ities from a scientist’s perspective, a focus on software robust-

ness from a user’s perspective, as well as strict financial

discipline from a director’s perspective. He was our harshest

critic and truest friend.

1.2 Challenges

While the impact of ab initio quantum chemistry is already

great, there are a number of key areas where further progress

is needed. We identify the ones that primarily concern us in

this section. They provide good motivation for a number of

the new developments discussed later in the paper, and present

a context in which the success of those developments can be

measured. For further perspective, we also touch on some of

the other frontiers of electronic structure theory that are not

specifically addressed in our new developments.

Efficient algorithms. Accepting the viability of the standard

theoretical chemical models for many problems of interest, the

first issue one faces is the question of the performance and

scaling of the computational algorithms used to implement

those models. Even in areas that seem as well-defined and

mature as computational matrix algebra,27 significant progress

continues to occur in the performance of basic kernels such as

matrix diagonalization. This type of progress does not alter

the scaling of the diagonalization problem with size of the

matrix, but instead reduces the prefactor that multiplies the

cubic size scaling of the cost. Computational quantum chem-

istry is presently at a far less evolved stage, where the

numerical kernels are still being actively developed, and in

some cases even replaced or redefined by new formulations.

Accordingly, advancing algorithmic efficiency is one of the

main themes of this paper. We must admit that assessing

improvements in efficiency and performance is a potentially

troublesome issue, because it raises the related problem of the

comparative performance of different software packages. It is

difficult to establish a fair comparison between different codes

due to the fact that options controlling precision and cutoffs

do not always map directly, and also because markedly

different results can be obtained on different computer archi-

tectures. Also, some codes such as the Gaussian series expli-

citly forbid publication or sharing of comparative timings as

part of their license agreement. For reasons such as these

where performance is a key issue, we have elected to simply

compare against the previous major release of Q-Chem20 in all

results discussed here—in other words we focus solely on the

extent of internal algorithmic and coding improvements.

Numerous examples are discussed later, including new two-

electron integral algorithms, and the use of auxiliary basis

expansions. Other examples emerge in the context of other

frontiers, such as dealing with the size-scaling of calculations,

and enabling higher accuracy calculations.

Scaling with system size. We have already discussed the fact

that brute force solution of the Schrödinger equation has

computational costs that increase exponentially with the

number of electrons, n, and basis functions N, as the number

of terms in the wavefunction is NCn. The standard theoretical

chemical models, by contrast, exhibit only polynomial cost

increases with molecular size, such as N3, N4,. . .etc. The self-

consistent field (SCF) molecular orbital models discussed in

section 2, Kohn–Sham density functional theory (DFT), and

Hartree–Fock (HF), are in principle N3 as a function of

molecular size, but can scale N4 (due to 4-center 2-electron

integral evaluation) for very small systems. Wavefunction-

based treatments of electron correlations scale with higher

polynomial powers of molecular size, typically N5, N6 and N7

for the widely used second order Møller–Plesset (MP2) and

coupled cluster (CC) models discussed in sections 3 and 4.

These scaling relations for computational cost as a function

of molecular size are usually based on the assumption that the

matrix element manipulations involve dense linear algebra.

Fortunately this does not have to be true for large molecules

where sparsity in the matrix elements and wavefunction un-

knowns can be exploited to make such estimates overly

pessimistic. For example, there are O(N4) 4-center 2-electron

integrals, formally, which gives rise to N4 scaling for SCF

calculations. However, for large molecules only O(N2) of them

are numerically significant,28 if localized Gaussian basis func-

tions are used. Further algorithmic developments of increasing

sophistication can even replace two-electron integrals corre-

sponding to long-range interactions by multipole-based repre-

sentations, which opens the way for linear scaling in steps that

involve 2-electron integral processing for treating Coulomb

interactions. This is a particular example but, as emphasized

by Kohn,29 linear scaling is in principle possible in general

because of what he termed the near-sightedness of electrons—

their interactions with distant electrons are effectively

screened. Locality in real space can be exploited in calculations

that employ either real-space representations of the wavefunc-

tion or density, or local basis functions. Thus the long-range

goal for electronic structure calculations on nanoscale systems

is to achieve linear scaling with molecular size.

However, true linear scaling is a goal that cannot always be

fully realized in practice because the length scales on which

this short-sightedness occurs often cannot be routinely reached

yet, particularly for more sophisticated theoretical model

chemistries. Locality of electronic structure, as measured for

instance by the ‘‘size’’ of a localized orbital is on the order of

ten or so atoms in a line for insulators.30 Such a size is

measured to a high precision of about 1 ppm, as opposed to

cartoon representations, which are more typically localized to

within two or three atoms. It means a natural ‘‘linear scaling

regime’’ would correspond to thousands of atoms in three

dimensions, well beyond the realm of the routine at present.

See section 2.2, 2.3 and 2.5 for what is possible at present with

self-consistent field methods. It is therefore also useful to seek

faster algorithms which become effective at smaller system

sizes, perhaps through making additional approximations

which are nonetheless not linear scaling. This is a theme that

pervades much recent work in quantum chemistry, and shows

up in many of the specific topics discussed later on, such as

approximations to MP2 theory in section 3, and fast methods

for strong correlations in Section 5. Approaches that subdivide
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the system into a primary region that is modeled at a relatively

high level and a secondary region that serves as an environ-

ment for the primary region represent another approach to the

problem of making calculations on very large systems feasible

in the short run, and a variety of these approaches are

discussed in section 6.

Higher accuracy calculations. Quantum chemical approxi-

mations can be viewed as points on a two-dimensional (2-D)

graph where one axis is the extent of completeness of the one-

particle basis set and the other axis is the extent of complete-

ness of the electron correlation treatment. High accuracy

calculations are ones where both of these approximations

are carried to a sufficiently sophisticated level that one ap-

proaches convergence in the resulting computed observables.

For many years, the target in electronic structure theory has

been an overall accuracy of approximately 1–2 kcal mol�1 in

thermochemistry, a standard which has come to be called

‘‘chemical accuracy’’. Methods such as the G3 approach

(a composite of several separate calculations) achieve this

accuracy, albeit at great computational cost.31 On-going

developments yield even higher accuracy at even greater

computational cost.32,33

Another recurring theme of this paper are new develop-

ments that are designed to permit higher accuracy calculations

at reduced computational cost. We foreshadow a few of them

now. Dual basis approaches to economically approaching the

basis set limit in DFT, HF and MP2 calculations are discussed

in Sections 2 and 3. Auxiliary basis sets reduce the growth of

computational cost with size of atomic orbital basis and are

discussed in the context of MP2 theory in Section 3. The use of

non-standard reference configurations such as high spin states

to permit more accurate coupled cluster calculations is dis-

cussed in Section 4.

There are also many other approaches to the problem of

high accuracy which lie beyond our present scope. One

important class of examples are the Quantum Monte Carlo

methods,34 which avoid the need for virtual orbitals, in

exchange for an inherently stochastic character. Another class

of examples are the so-called r12 methods35 which introduce

an explicit dependence on inter-electronic distances into the

wavefunction. Researchers with a focus on small molecules

and connections with spectroscopy are now starting to focus

on the challenge of achieving what they describe as ‘‘spectro-

scopic accuracy’’.

Strongly correlated systems. The most widely used standard

theoretical models (HF, DFT, MP2, CCSD etc.) are all based

on the assumption that a single electron configuration is a

qualitatively correct picture of electronic structure. This is

usually a good approximation for stable molecules, because

the electrons pair into bonds. However, it sometimes breaks

down for reactive molecules (or molecules in reactive config-

urations, such as transition structures), where the energy gap

between the nominal ground state configuration, and excited

configurations becomes small, and they mix together strongly.

This happens in singlet diradicaloid molecules in organic

chemistry, in certain types of low-spin antiferromagnetically

coupled transition metal systems in inorganic chemistry, and

in many transition structures (e.g. of diradicaloid type). It

remains a frontier of electronic structure theory to develop

tractable approximations for the more complex wavefunctions

in this category, because of their potential multireference

character.

In particular, what should the form of the strongly corre-

lated wavefunction be? One widely used approach is to employ

‘‘complete active space’’ (CAS) methods36 to form the exact

(full CI) wavefunction in a small set of optimized orbitals that

are important or ‘‘active’’, and then optionally correct by

perturbation theory. But the cost of a CAS calculation is

exponential just like FCI, and therefore molecule-specific or

even geometry-specific choices of the active space must be

made to keep it small enough to be feasible. One promising

way around this problem are novel approximations to FCI

based on the density matrix renormalization group approach,

although this work is still at an early stage.37,38

Another option is to approximate the wavefunction but

then allow a larger range of active orbitals (either all valence

orbitals or all orbitals). Of course, incomplete approximations

to the wavefunction in a full active space may not be suffi-

ciently accurate. Research continues on true multireference

methods,39 which we do not consider in this paper, and also on

simpler models that can capture these strong correlations,

which we do discuss. Coupled cluster methods are one such

possibility, as well as theories based on geminals, and ap-

proaches that blend the two, such as coupled cluster perfect

and imperfect pairing. These approaches are discussed in

Sections 4 and 5. One can even imagine entirely new ap-

proaches to electronic structure that may offer future advan-

tages such as intracule-based models which are foreshadowed

in Section 9.

Excited states. Obtaining reliable descriptions of the elec-

tronic excited states (the higher eigenvalues Ei, i > 0) presents

a challenge somewhat similar to the treatment of highly

correlated systems. There is a great diversity of excited

states—some involve one-electron valence excitations from

the ground state, such as an n - p* state in carbonyl groups,

while others involve excitations into very diffuse Rydberg

orbitals, such as lower excited states of atoms and saturated

molecules, some involve charge transfer from one region to

another, some involve significant contributions from promo-

tions of 2 (or even more) electrons, such as the so-called dark

states of polyenes, etc. Thus it is difficult to build economical

and yet accurate theoretical chemical models that can describe

this diversity. Most popular at present are approaches based

on time-dependent extensions to density functional theory

(TDDFT), although this still suffers from significant limita-

tions.40,41 Coupled cluster theory provides an alternative

framework that is useful for smaller molecules, as discussed

in Section 4. CAS-based methods are another alternative,

although the selection of the active space is a tremendous

challenge.

High-dimensional potential energy surfaces. The realm of

routine applicability of quantum chemical methods ranges

from small molecules to systems of several hundred atoms,

depending upon the computational resources available and the
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level of theory chosen. As studies on larger molecules become

more feasible, new challenges arise in the exploration of their

potential energy surfaces, which become increasingly high-

dimensional. Isolating and characterizing local minima and

the saddle points that connect them becomes increasingly

difficult, and indeed less meaningful, as their number grows

exponentially with molecular size. This issue demands increas-

ing convergence with the methods of molecular dynamics and

statistical mechanical simulations in general. Some aspects of

this issue are discussed in Section 7, including direct dynamics,

and methods for locating reaction paths.

Relativistic quantum chemistry. Largely, the quantum che-

mical methods discussed in this paper are non-relativistic in

nature—with the relativistic character of inner shell electrons

in heavier elements being ‘‘hidden’’ inside effective core po-

tentials. However, the adequate treatment of all electrons in

molecules that contain heavy elements is another challenge for

the field, where significant progress is being made.42,43

1.3 Outline

The first several sections of this paper focus on summarizing

new developments in the available model chemistries in

Q-Chem, starting with self-consistent field density functional

theories (DFT)44 and Hartree–Fock (HF) methods (Section 2).

This is followed in Section 3 by the least expensive corrections

to the HF wavefunction, namely second-order perturbation

theory (MP2), as well as modifications to it. Even here new

models and methods are continuing to arise, with new

strengths. We then turn to more advanced coupled cluster

methods in Section 4, with particular emphasis on the new

spin-flip approach and its implications. This is followed by a

discussion of novel inexpensive treatments of highly correlated

systems in Section 5. These methods model the so-called non-

dynamical (or bond-breaking) correlations, and then correct

perturbatively for the remaining dynamical (or atomic-like)

correlations.

The following several sections build upon the basic theore-

tical model chemistries in several different directions. The first

is the definition of hybrid model chemistries, in which part of a

system is described at a higher level of sophistication and a

larger part (the environment) is described at a lower level, as in

methods that mix quantum mechanics with molecular me-

chanics (QM/MM) or describe solvation using continuum or

reaction field solvent models. The next section concerns

molecular properties, which are generally given as responses

of the molecular energy to perturbations, such as applying

magnetic fields (NMR properties), electric fields, or displacing

nuclei (computing vibrational frequencies). The focus here is

on new linear scaling NMR algorithms, which open up a new

size scale for applications. After this, we turn to issues con-

cerned with walking on potential energy surfaces, and discuss

efficient location of transition structures, reaction paths, and

the execution of direct dynamics using quantum chemistry.

Finally we discuss capabilities related to the analysis of

electronic structure calculations.

2. Fast density functional theory and

Hartree–Fock calculations

Self-consistent field (SCF) methods are the cornerstone of

modern quantum chemistry. They include the HF model and

Kohn–Sham DFT methods. They describe electronic structure

in terms of molecular orbitals with electron–electron correla-

tions either averaged out (as in the HF model), or included

implicitly through functionals as in DFT. Present-day DFT

methods in particular, often offer the best compromise

between accuracy and feasibility for chemical applications to

medium and larger sized molecules. This began with develop-

ment of gradient-corrected functionals in the late 1980’s, and

was cemented with the ground-breaking development of hy-

brid functionals such as B3LYP by Becke in 1993.45,46 Hybrid

functionals include a component of exact (Hartree–Fock)

exchange. Functionals that do not include exact exchange

such as gradient-corrected, or local density functionals, offer

some advantage in computational efficiency as the exact

exchange terms are computationally demanding. However

they are generally slightly less accurate.

Intense effort continues on the design of new density func-

tionals, with numerous proposals appearing each year. Some

of these new ones including tau-containing functionals such as

BMK,47 and EDF2 which is optimized for vibrational fre-

quency predictions48 are included in Q-Chem, in additional to

more standard ones, and users can also input their own

functionals. Many of the new functionals offer advantages in

niche applications, particularly if they have been empirically

parameterized for such applications. However, none that we

are aware of appear to be broadly better than B3LYP and

related functionals for general use. Finding functionals that

improve over B3LYP without destroying the simplicity that

makes DFT so computationally efficient has simply proven to

be a most difficult task. There are, however, genuine physical

weaknesses associated with present-day functionals, such as

the incomplete cancellation of Coulomb self-interaction by the

exchange functional49 and lack of long-range van der Waals

interactions in the correlation functional,50 that provide ample

motivation for continuing effort in this area in the future.

In the absence of usable breakthroughs on these difficult

issues, our main focus on new developments in DFT calcula-

tions is therefore on algorithms to perform the calculations,

rather than on new functionals, as we discuss below.

2.1 Improved 2-electron integral evaluation

Evaluating 4-center two-electron integrals over Gaussian

atomic orbital basis functions is the fundamental step in the

assembly of the mean-field Hamiltonian in any SCF calcula-

tion which involves exact exchange (e.g. B3LYP, or HF itself),

and has thus been a perennial research topic in quantum

chemistry. Q-Chem combines the Head-Gordon-Pople

(HGP) method,51 the COLD prism method52 and the Rys

polynomial method53,54 to evaluate two-electron integrals,

derivatives and second derivatives.55 All 2-electron 4-center

integrals are classified according to their angular momentum

types and degrees of contraction. For each type of integral, the

program chooses the available algorithm with lowest cost. In

practice, the HGP method is chosen for most integral classes
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in a gradient or hessian calculation, and thus it usually

dominates the total CPU time. As angular momentum (and

derivative order) increases, the memory required per shell

quartet grows strongly and we observe corresponding perfor-

mance degradation with the existing algorithm that processes

batches of shell quartets in vector-like fashion. Therefore we

have re-written our HGP codes for the evaluation of the two-

electron integrals, integral derivative terms in the gradient

evaluation, and the corresponding second derivative terms in

the Hessian evaluation, fundamentally reordering the loops.

Our approach aims to improve code efficiency by reducing

cache misses rather than by explicitly reducing floating point

operation counts. Some timing results from a Hartree–Fock

calculation on the AZT molecule are shown below, showing

significant efficiency improvements over our previous imple-

mentation (Table 1).

2.2 Fast Coulomb matrix evaluation

For DFT calculations without exact exchange (e.g. BLYP or

EDF1), the 4-center 2-electron integrals are not necessarily

required, since it is possible to formulate alternative ap-

proaches that evaluate their contribution to the Coulomb

terms in the mean field Hamiltonian (the Coulomb matrix).

In the last decade, dramatic progress has been made to

improve the efficiency of Coulomb calculations, including

techniques such as the Continuous Fast Multipole Method

(CFMM)56–59 and the J-Engine60–62 which were first imple-

mented in Q-Chem. An important recent development is the

advent of the Fourier Transform Coulomb (FTC) method (ref.

63–65) and we have recently developed an improved version of

this approach for evaluating Coulomb matrices and forces.66

It replaces the least efficient part of the previous Coulomb

methods with an accurate numerical integration scheme that

scales as O(N2) instead of O(N4) with the basis size. The result

is a smaller coefficient of linear scaling with respect to mole-

cular size, which speeds up the Coulomb calculation by several

times over the most efficient existing Coulomb code, which

was the combination of CFMM and the J-engine.

The practical speed-ups obtained using the FTC technique

strongly depend on the basis function pair density i.e. the

number of near field integrals which have to be evaluated

analytically. This quantity depends on the density of the

system in question and the basis set that is used. Table 2

depicts the effect of adding FTC to the Coulomb calculation in

Q-Chem 3.0 for an alanine test series using various basis sets.

The 5-mer, 10-mer and 15-mer correspond to 21, 41, and 61

non-hydrogen atoms, respectively. The speed-ups from using

FTC are moderate when relatively small Pople-type basis sets

are used without diffuse functions. However, the computa-

tional penalty usually associated with adding diffuse and

polarization functions to the basis set is greatly reduced by

the FTC due to its better O(N2) scaling with the number of

basis functions per atom. This is particularly exciting because

it is for large extended basis sets that the existing linear scaling

methods such as CFMM are least effective (for given molecule

size). A good example is the 6-31Gþ(df,pd) basis calculations
where, due to the role of the diffuse functions, the linear

scaling region has not been reached yet by 20 heavy atoms

(an Alanine5 molecule). The computational costs of the Cou-

lomb part using our existing algorithms went up from 109 to

over 700 min. by increasing the system size from 21 to 41

heavy atoms (Alanine5 to Alanine10) showing that the linear

scaling algorithms are not in their asymptotic regime. By

contrast, the computational cost for Alanine10 with this basis

is only 160 min. with the FTC technique. A systematic study66

has been published recently exploring the role of the J-matrix

and CFMM techniques when the FTC is used. The importance

of using all three methods in concert has been clearly shown.

The CFMM, J-matrix engine and FTC techniques together

offer the best performance for the Coulomb part of DFT

calculations today, making DFT more affordable for very

large systems with high-quality basis sets.

2.3 Exchange–correlation quadrature evaluation

Together with Coulomb and exchange matrix evaluation, the

other part of a DFT calculation with substantial computa-

tional cost is the numerical integration of exchange–correla-

tion (XC) terms. Most quantum chemistry codes today,

including Q-Chem, employ pruned atom-centered grids of

the Becke type.67 Many years ago, the Pople group introduced

Table 1 CPU timings (in seconds) for evaluation of the gradient and
Hessian terms for closed shell HF calculations on the AZT moleculea

AIX Linux

Basis set Old New New/old Old New New/old

Gradient evaluation: 2-electron integral derivative term
3-21G 34 s 20 s 0.58 25 s 14 s 0.56
6-31G** 259 s 147 s 0.57 212 s 120 s 0.57
DZ 128 s 118 s 0.92 72 s 62 s 0.86
cc-pVDZ 398 s 274 s 0.69 308 s 185 s 0.60
Hessian evaluation: 2-electron integral second derivative term
3-21G 294 s 136 s 0.46 238 s 100 s 0.42
6-31G** 2520 s 976 s 0.39 2065 s 828 s 0.40
DZ 631 s 332 s 0.53 600 s 230 s 0.38
cc-pVDZ 3202 s 1192 s 0.37 2715 s 866 s 0.32

a The AIX timings were obtained on a single processor of an IBM RS/

6000 workstation running the AIX4 operating system, and the Linux

timings were obtained on a single 2 GHz processor of an AMD

Opteron cluster where the Q-Chem executable was compiled with

Intel 32-bit compilers.

Table 2 Efficiency improvementsa in the linear scaling Coulomb
technique by using the Fourier transform Coulomb method, based
on calculations on alanine oligomers of length 5, 10, or 15 amino acids

Basis set 5(old) 5(ftcb) 10(old) 10(ftcb) 15(old) 15(ftcb)

6-31G(df,pd) 39 27 145 98 263 169
6-31Gþ(df,pd) 109 46 736 160 1240 362
cc-pvdz 56 21 177 79 369 143
cc-pvtz 361 85 1165 280 2482 551

a All calculations have been performed on a single processor of a

2.0 GHz Opteron cluster. The timings are in minutes and include the

total costs of the Coulomb part for all SCF iterations and the force

calculations. A SAD (superposition of atomic density) guess and 10�12

integral threshold were used. The SCF convergence threshold was

10�7 for the maximumDIIS error. b 3.8 a�10 grid density has been used

in the plane wave part of the calculations.
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the first standard quadrature grid,68 SG-1, for molecular

density functional calculations and this has subsequently

found widespread use in both the Q-Chem and Gaussian

packages. However, continued improvements (CFMM, FTC,

etc) in Coulomb technology have made it increasingly impor-

tant to devise a smaller grid suitable for preliminary investiga-

tions on large systems. For this purpose, Q-Chem 3.0 contains

a highly optimized new grid, SG-0,69 which is roughly half the

size and accuracy of SG-1, and roughly twice as fast. In the

design of SG-0, the atomic grids for each of the elements up to

chlorine (except helium and neon) were individually optimized

and particular attention was paid to the elements (H, C, N and

O) that are most important in organic chemistry.

To accelerate XC quadrature on these standard grids, we

have devised and implemented a scheme called the incre-

mental DFT method (IncDFT)70 which exploits the small

differences between the XC matrix on successive SCF cycles

for efficiency gains. Unlike the case for the corresponding HF

method,71 the XC functional is not linear with respect to the

density, and our scheme is formulated in such a way that the

problem of using functionals is circumvented and proper

mathematical consistency is maintained. As convergence is

approached in the iterative solution to the KS-DFT equations,

an increasing fraction of the grid points associated with the

numerical quadrature can be screened out due to the decreas-

ing change in the density. In conjunction with a variable

threshold, the IncDFT method yields up to 45% saving in

the time needed for the integration procedure with negligible

loss in accuracy. Further developments that make use of a

uniform grid in conjunction with the atom-centered grids offer

the hope of additional speedups in the future,72 without

the loss of translational invariance normally associated with

uniform grids.

2.4 Dual basis self-consistent field calculations

While self-consistent field (SCF) methods are in principle the

most efficient first principles electronic structure methods, they

are still expensive in large basis sets, particularly when exact

exchange is required. In fact, the MP2 correlation correction

(performed with the efficient methods described in the follow-

ing section) can be substantially cheaper than the pre-requisite

SCF calculation (see for example the calculations discussed in

Section 3). One way of attacking this problem is via so-called

dual basis methods,73–76 where the SCF calculation is per-

formed in a small ‘‘primary’’ basis, followed by a one-step

correction for basis set extension effects that is performed in a

large ‘‘secondary’’ basis. If the primary and secondary basis

sets are chosen in an appropriate manner, there is very modest

loss of accuracy relative to performing a full SCF calculation

in the large basis set, and the SCF calculation can be acceler-

ated by over an order of magnitude (i.e. by a factor that can

approach the typical number of iterations in the SCF

scheme).76 Of particular note for MP2 calculations in large

basis sets is the fact that we have formulated suitable subsets

of the large cc-pVTZ and cc-pVQZ basis sets77,78 that can be

used very effectively in conjunction with the efficient resolution

of the identity (RI) MP2 methods described in the following

section. Together they reduce the cost of large basis

MP2 calculations such as cc-pVQZ by roughly an order of

magnitude.

2.5 Linear scaling diagonalization replacements

For large molecules, the initial computational bottlenecks are

associated with assembly of the effective one-particle Hamil-

tonian (Fock matrix) including the Coulomb and exchan-

ge–correlation terms discussed above, and the exact

exchange terms that are treated via the linear exchange (LinK)

method.79 Given the resulting linear scaling of Fock matrix

assembly, the cubic scaling diagonalization of this matrix then

eventually becomes rate-determining.80 A multitude of meth-

ods have been proposed to exploit natural sparsity30,81 to

achieve linear scaling replacements for this diagonalization

step (for reviews see ref. 82 and 83). We use a blocking

strategy84,85 to avoid substantial overhead in manipulating

sparse matrices, and have implemented several effective linear

scaling approaches, including canonical purification,86 so-

called curvy steps,87,88 and Chebyshev-based89 fast summation

methods.90,91 These algorithms become effective for systems

with one-dimensional connectivity that are in the 100 atom

regime. Their effectiveness is least for true 3-dimensional

systems, and also diminishes for large basis sets (where the

dual basis strategy discussed above is a viable alternative).

3. Auxiliary basis expansions for second order

perturbation theory calculations

Second order Møller-Plesset theory (MP2) is a simple wave-

function based method to correct HF theory for the effects of

electron correlation.6 MP2 yields reliable predictions of struc-

ture, vibrational frequencies, and relative conformational en-

ergies of closed shell organic molecules,92 although it can

perform poorly for radicals.93 Relative to DFT methods,

MP2 has the advantage that it naturally includes long-range

dispersion interactions, which are absent in standard density

functionals. For the broad class of molecules where MP2

works well, the main limitation is that traditionally MP2

calculations are significantly more expensive than the SCF

calculation that precedes it. It is a particularly exciting devel-

opment that this is no longer necessarily the case, thanks to the

development of auxiliary basis methods.94,95

Auxiliary basis expansions replace 4-center 2-electron inte-

grals by variationally optimal96 linear combinations of 3- and

2-center 2-electron integrals. This is often referred to as a

‘‘resolution of the identity’’ (RI) or ‘‘density fitting’’ (DF)

approximation. It does not change the scaling of integral

evaluation with respect to the size of the molecule, since there

are still nominally a quadratic number of numerically signifi-

cant integrals to evaluate and process. However it greatly

reduces the quadratic pre-factor, which now only grows with

the cube of the number of functions per atom, rather than the

4th power. This greatly facilitates development of efficient

algorithms, and facilitates more accurate calculations using

larger basis sets.

With the development of standardized MP2 auxiliary basis

sets by the Karlsruhe group94,95 MP2 methods based on the RI

approximation97,98 are ripe for widespread adoption in quan-

tum chemistry. The loss of accuracy associated with using
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optimized auxiliary basis expansions in MP2 calculations is

very small. For example, on MP2 calculations of atomization

energies for the 148 neutral molecules of the G2 data set, the

RMS and maximum errors are only 0.10 and 0.27 kcal mol�1,

respectively, using the PVDZ basis. This is insignificant rela-

tive to the errors in MP2 itself, which are about 50 times

larger.

3.1 RI-MP2 energies and gradients

We have developed efficient algorithms for RI-MP2 energies

and gradients—the latter differing significantly from the ori-

ginal literature94,98 to eliminate data transfer bottlenecks. In

addition to restricted and unrestricted calculations, restricted

open shell MP299,100 is also supported. Some sample timings

are shown in Table 3 for conventional and RI-MP2 energy

evaluation with the cc-pVDZ basis, and in Table 4 for gradient

evaluation with the 6-31G** basis. Q-Chem exploits the

shared s and p exponents of the 6-31G** basis to perform

substantially faster 4 center 2-electron integral and integral

derivative evaluation than is possible in basis sets like cc-

pVDZ which lack this constraint. Comparing conventional

MP2 and RI-MP2 shows that the RI approximation yields

very substantial speedups. For energy calculations (Table 3)

on systems in the 20 heavy atom regime (tetrapeptides), the

RI-MP2 correlation treatment is inexpensive relative to the

preceding HF calculation, in contrast to the situation with

conventional algorithms. For gradient calculations, the

RI-MP2 gradient code is about twice as fast, overall, as a

well-optimized conventional MP2 gradient code101 for a basis

of this modest size. Larger speedups are obtained with larger

basis sets, due to the n3 scaling with number of basis functions

per atom, n, as opposed to n4 for conventional MP2. The

overall RI-MP2 gradient cost is less than 3 times the cost of an

SCF gradient for the same molecule in the 20 heavy atom

regime, by contrast with the conventional MP2 gradient

evaluation which is several times more computationally ex-

pensive. As molecule size grows into the 40 heavy atom regime

(as exemplified in the tables by octapeptides) and then the 80

heavy atom (hexadecapeptide) regime, the RI-MP2 steps that

are 5th order in molecule size eventually dominate the HF

steps and one must resort to lower scaling alternatives to MP2

theory in order to keep computational costs manageable, as

discussed in the following sections.

3.2 Triatomics-in-molecules local correlation (TRIM-MP2)

energies

Local correlation methods102,103 introduce spatial cutoffs to

reduce the scaling of computational cost with molecular size.

The TRIM model104 is one such approach, which uses (re-

dundant) atom-labeled functions105 to span the occupied and

virtual sub-spaces, and then retains only excitations where at

least one electron fluctuates from an occupied to virtual orbital

on the same atom. A new RI-based algorithm for the TRIM-

MP2 energy106 greatly accelerates these local correlation cal-

culations (e.g. compare TRIM and RI-TRIM in Table 3

above), which scale with the 4th power of molecule size. In

addition, relative to the parent RI-MP2 method itself, RI-

TRIM-MP2 accelerates the electron correlation part of the

calculation by a factor proportional to the number of atoms in

the molecule, regardless of the shape of the molecule. At the 80

heavy atom level (e.g. the hexadecapeptide), for instance, the

speedup is approximately a factor of 4, as is evident in Table 3.

The TRIM model can also be applied to the scaled opposite

spin models discussed below. A principal advantage of TRIM

relative to other local correlation models such as the seminal

Pulay–Saebø model102,103 is the fact that potential energy

surfaces in the TRIM model are continuous.

3.3 4th order scaled opposite spin (SOS-MP2) energies and

gradients

In a statistical sense, the accuracy of relative energies from

MP2 calculations can be significantly improved by semi-

empirically scaling the opposite-spin and same-spin correla-

tion components with separate scaling factors, as shown by

Grimme.107 Results of similar quality can be obtained by just

scaling the opposite spin correlation (by 1.3),108 and comple-

tely omitting same-spin correlation, which is the scaled oppo-

site spin MP2 (SOS-MP2) method. Furthermore the SOS-MP2

energy can be evaluated using the RI approximation together

with a Laplace transform technique,109 in an effort that scales

only with the 4th power of molecular size, as opposed to 5th

order for MP2 or RI-MP2. Efficient algorithms for the

SOS-MP2 energy108 and analytical gradient are available in

Q-Chem 3.0, and offer advantages in speed over MP2 for

larger molecules, as well as statistically significant improve-

ments in accuracy. Finally, the SOS-MP2 method does system-

atically underestimate long-range dispersion (for which the

appropriate scaling factor is 2 rather than 1.3) but this can be

accounted for by making the scaling factor distance-depen-

dent, which is done in the modified opposite spin variant

(MOS-MP2) that has recently been proposed and tested.110

The MOS-MP2 energy and analytical gradient are also avail-

able in Q-Chem 3.0 at a cost that is essentially identical with

SOS-MP2. Indeed we have chosen to use SOS-MP2 timings in

Table 3 above for energies, and MOS-MP2 timings in Table 4

above for gradients. These timings show that the 4th order

implementation of SOS-MP2 and MOS-MP2 yields substan-

tial speedups over RI-MP2 for molecules in the 40 heavy atom

regime and larger. It is also possible to customize the scale

Table 3 CPU timings (in seconds on a 2 GHz AMD Opteron
processor) for energy evaluation with the cc-pVDZ basis on two
conformations (one globular and thus 3-D, and one that is extended
and thus 1-D) of an alanine tetrapeptide (390 basis functions), an
alanine octapeptide (770 basis functions), and a hexadecapeptide (1530
basis functions). The frozen core approximation was used in all post-
HF calculations. A threshold of 10�12 was used for integral evaluation,
the SCF convergence criterion was 10�8, and no symmetry was
employed. The correlation energy calculations do not include the
HF timing, so that the relative size of the two can be compared

HF MP2 RI-MP2 TRIM RI-TRIM SOS-MP2

Tetra3D 2340 3087 245 2694 211 282
Octa3D 15729 47480 5392 34510 2486 3394
Hexadeca3D 71178 — 145600 373900 33320 48630
Tetra1D 1735 2143 248 2041 212 280
Octa1D 7592 24240 5171 16920 2305 3290
Hexadeca1D 41355 — 143100 194900 31880 47040
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factors for particular applications, such as weak interactions,

if required.

3.4 Lower scaling SOS-MP2 energies

The 4th order scaling SOS-MP2 energy evaluation can be

evaluated in reduced cost for larger systems by exploiting

natural sparsity,111,112 via a newly developed local algorithm.

Within the RI formulation, this algorithm separates intrinsi-

cally long-range terms, which are contained in 2-center inte-

grals, from intrinsically short-range terms, which comprise 3-

center expansion coefficients. The former are treated exactly

without cutoffs, while sparsity is exploited in the latter, so that

the results can reproduce the original theory to a specified

accuracy. Scaling is reduced to linear in the rate-determining

step (which is short-range) while other (formerly smaller)

terms are still quadratic or cubic. As an example of the

speedups that are achievable, while retaining microHartree

accuracy, we summarize calculations on two (one extended

and the other globular) conformations of hexadeca-alanine

peptides, CH3CO-[NHCHCH3CO]15-NHCH3 using the

VDZ(d) basis set. For the linear conformer, the local SOS-

MP2 code (LSOS-MP2) shows a 3.3 times speed-up in CPU

time (2.3 speedup in elapsed time) compared to SOS-MP2. For

the globular conformer, LSOS-MP2 yields a speedup of 1.5

times for CPU time (1.1 times elapsed). This is expected as the

onset of the linear scaling electronic methods for dense 3-D

systems usually occurs at quite large molecules. Nonetheless,

the fact that LSOS-MP2 yields sizable CPU savings for a

globular conformer with only 80 heavy atoms is encouraging.

4. Coupled cluster methods for ground and excited

states

Coupled cluster (CC) methods113,114 are amongst the most

powerful approaches available for treating electron correla-

tions, and thus systematically improve upon lower level wave-

function methods such as Hartree–Fock and MP2 theory, as

well as present-day DFT methods. Of course this power comes

at a much increased computational price—the scaling of CC

calculations with system size starts at 6th order for methods

that include single and double excitations, and is 7th order or

higher if triples are considered.

Q-Chem’s CC capabilities include the standard singles and

doubles CC method (CCSD)115 plus non-iterative triples

corrections via the CCSD(T)116 and CCSD(2)117 appro-

aches. Great flexibility is possible in the choice of reference

orbitals—including the ability to use Kohn–Sham orbitals118

which can be very useful when the HF orbitals are poor. The

energy and gradient can also be evaluated with optimized

orbital (OO) approaches including optimized doubles (OD)119

and quadratic CCD (QCCD)120,121. An excited state treatment

based on OD is available,122 as are (T) and (2) corrections.123

OD and QCCD can also be evaluated within active spaces,

defining the VOD124 and VQCCD121 methods, for which (2)

corrections are available.125,126 Additionally, the analytical

gradient of the CCSD energy is available.

Equation-of-motion (EOM) CCSD methods expand the

range of chemical problems that can be treated by CC

methods. Specifically, EOM-CC methods enable accurate

calculations of electronically excited states (EOM-EE-

CCSD);127 ground and excited states of diradicals and

triradicals via the spin-flip (SF) approach (EOM-SF-

CCSD);128,129 and ionization potentials and electron attach-

ment energies as well as robust treatment of problematic

doublet radicals (EOM-IP/EA-CCSD,130–132 and EOM-DIP-

CCSD133). With both closed and open-shell references (RHF/

UHF/ROHF), frozen core/virtual options, full use of mole-

cular point group symmetry, analytic gradients for RHF and

UHF references,134 and properties calculations (permanent

and transition dipole moments,hS2i,hR2i, etc), we believe this

is the most complete EOM-CCSD capability available.

Conceptually, EOM is very similar to configuration inter-

action (CI): target EOM states are found by diagonalizing the

so-called similarity transformed Hamiltonian; �H = e�T HeT

to obtain eigenvalues, E, and eigenvectors, R, according to
�HR= ER. In the EOM-CCSD models, T and R are truncated

at single and double excitations, and the amplitudes T satisfy

the usual CCSD equations for a reference |F0i, which are

solved first. The computational scaling of EOM-CCSD and

CISD methods is identical, i.e., N6, however EOM-CCSD is

numerically superior to CISD because correlation effects are

‘‘folded into’’ the transformed Hamiltonian, and because

EOM-CCSD is rigorously size-extensive. With 6th order scal-

ing, our current implementation of the EOM-XX-CCSD

methods enables calculations on medium-size molecules, e.g.,

up to 10–14 heavy atoms.

By combining different types of excitation operators and

references |F0i, different groups of target states can be ac-

cessed. For example, electronically excited states can be de-

scribed when the reference |F0i corresponds to the ground

state, and the operators R conserve the number of electrons

and total spin.127 In the ionized/electron attached EOM

models,130,131 the operators R are not electron conserving

—from a closed shell reference these models can accurately

treat ground and excited states of doublet radicals and some

other open-shell systems, whose theoretical treatment is often

plagued by symmetry breaking. Finally, the EOM-SF meth-

od128,129 in which the excitation operators include a spin-flip,

allows one to access diradicals (from a triplet reference),

triradicals (from a quartet reference), and bond-breaking.

There is a growing number of applications that employ the

EOM-SF-CCSD with success for state-of-the-art studies of

diradicals,135–138 and also triradicals,136,139 illustrating the

Table 4 Total CPU timings (seconds on a 2GHz AMD Opteron
processor) for force evaluation with the 6-31G** basis (using the on
two conformations (one globular and thus 3-D, and one that is
extended and thus 1-D) of an alanine tetrapeptide, octapeptide, and
hexadecapeptide. All tolerances and settings were the same as given in
Table 3. These timings include all steps necessary to evaluate the force

HF MP2 RI-MP2 MOS-MP2

Tetra3D 1704 9160 4470 4141
Octa3D 9596 121473 46953 30853
Hexadeca3D 46 305 — 781151 227251
Tetra1D 1253 6559 3400 3046
Octa1D 5672 68989 34389 18689
Hexadeca1D 29098 — 721879 164979
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increased range of systems that be treated relative to CCSD

for ground states. One particularly intriguing example is the

so-called DMX triradical,140 which is shown in Fig. 1. The

low-lying states of DMX are summarized in Fig. 2, which

shows that contrary to Hund’s rules, this triradical has an

open shell doublet ground state.

In some applications, restricting the excitation operator to

singles and doubles is insufficient, and to treat such cases,

Q-Chem includes the EOM-CC(2,3) approach,141,142 where R

is instead truncated at triple excitations. The reference state

excitation operator T, however, is still taken from CCSD. The

inclusion of triple excitations is necessary for achieving che-

mical accuracy (1 kcal mol�1) for ground state properties.

Triples are even more important for excited states. In parti-

cular, triple excitations are crucial for doubly excited states,141

excited states of some radicals and SF calculations (diradicals,

triradicals, bond-breaking) when the open-shell reference state

is heavily spin-contaminated. The accuracy of the EOM-

CC(2,3) method closely follows full EOM-CCSDT [which

can also be called EOM-CC(3,3)], but its computational cost

is less, though it still scales asN8 , and so is limited to relatively

small systems. For medium size molecules, EOM-CC(2,3)

calculations can be performed by using the active space

variant of the method, or within energy additivity schemes

where the effects of triple excitations are evaluated in a small

basis set.

5. Simplified methods for strong electron

correlations

5.1 Singlet strongly orthogonal geminal (SSG) methods

Computational models that use a single reference wavefunc-

tion describe molecules in terms of independent electrons

interacting via averaged Coulomb and exchange fields. It is

natural to improve this description by using correlated elec-

tron pairs, or geminals,143 as building blocks of molecular

wavefunctions. In the singlet strongly orthogonal geminal

(SSG) model,144 the wavefunction is taken as an antisymme-

trized product of different geminals, one for each electron pair.

Strong orthogonality means that each orthogonal molecular

orbital participates in only one geminal, and the number of

molecular orbitals contributing to each geminal is an adjus-

table parameter chosen to minimize the total energy. Open

shell orbitals remain uncorrelated. Both spin-restricted

(RSSG) and spin-unrestricted (USSG) versions are available.

AMulliken population analysis is performed for each geminal,

which enables assignment of geminals as core electron pairs,

chemical bonds, and lone electron pairs.

The presence of any but the leading geminal coefficient with

a large absolute value (for instance, 0.1 is often used for the

definition of ‘‘large’’) indicates the importance of electron

correlation in that geminal, and thus in the molecule. As an

example, consider a calculation on ScH with the 6-31G basis

set at the experimental bond distance of 1.776 Å. In its singlet

ground state the molecule has 11 geminals (22 electrons). Nine

of them form core electrons on Sc. The second highest geminal

(10) has E = �1.342609 a.u. and its 3 leading geminal

expansion coefficients are 0.991, �0.126 and �0.036. Mulliken

population analysis shows that geminal 10 is delocalized

between Sc and H, indicating a bond. It is moderately corre-

lated, as indicated by its second expansion coefficient of

magnitude 0.126. Geminal 11 has E = �0.757086 a.u. and

its 5 leading expansion coefficients are 0.961, �0.174, �0.169,
�0.124,�0.032. It is localized on Sc, and represents the pair of

4s electrons and their partial excitation into 3d orbitals. The

presence of three large secondary expansion coefficients shows

that this electron correlation effect indeed involves an ex-

panded valence shell—something that cannot be described

within active spaces that provide one correlating orbital per

Fig. 1 The structure and key molecular orbitals of the DMX tri-

radical.140

Fig. 2 Low lying electronic states of DMX as calculated by the

EOM-SF-CCSD method. Note that the closed-shell doublet (12B2

state) in which electrons are distributed in accordance with Aufbau

principle is 2.5 eV above the ground state. Another likely candidate for

the ground state, the quartet 1 4B2 state, is 0.16 eV above the open-

shell doublet, thus violating Hund’s rule. The multistate nature and

simultaneous treatment of dynamical and nondynamical correlation

by EOM-SF-CCSD were instrumental in characterizing electronic

structure of this triradical.
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nominally occupied orbital, such as the perfect pairing

model145 discussed below.

The description of molecular electronic structure can be

improved by a perturbative description of the missing inter-

geminal correlation effects, taking the SSG model as the

reference. We have implemented an Epstein–Nesbet (EN)

form of perturbation theory146 that permits a balanced de-

scription of one- and two-electron contributions to excitation

energies from the SSG reference. This form of perturbation

theory is especially accurate for calculation of weak inter-

molecular forces. Carried to second order, this defines the

SSG(EN2) model. All perturbative contributions to the

SSG(EN2) energy (second-order Epstein-Nesbet perturbation

theory from the SSG wavefunction) are analyzed in terms of

the largest numerators, smallest denominators, and total en-

ergy contributions by the type of excitation to permit a careful

assessment of the quality of SSG reference wavefunction.

Formally, the SSG(EN2) correction can be applied both to

RSSG and USSG wavefunctions. Experience shows that

molecules with broken or nearly broken bonds may have

divergent RSSG(EN2) corrections. By contrast, USSG(EN2)

theory seems to be well balanced, with the largest perturbative

corrections to the wavefunction rarely exceeding 0.1 in mag-

nitude. It is therefore the recommended form.

5.2 Coupled cluster perfect pairing methods

Closely related to the geminal model discussed above, but with

a slightly different set of strengths and weaknesses, are coupled

cluster perfect pairing methods. These are simple approxima-

tions to the Schrödinger equation in the valence active space

composed of 2 orbitals to represent each electron pair, one

nominally occupied (bonding or lone pair in character) and the

other nominally empty, or correlating (it is typically antibond-

ing in character). This is often called the perfect pairing active

space,145 and it is chemically appealing because it allows each

individual bond to be correlated with the single antibonding

orbital necessary for it to break correctly. The orbitals are to

be optimized to minimize the energy, in addition to solving for

the coefficients of all excited configurations that contribute to

the wavefunction.

The exact quantum chemistry in this (or any other) active

space is given by a complete active space SCF (CASSCF)

calculation,36 whose exponential cost growth with molecule

size makes it prohibitive for systems with more than about 14

active orbitals. One well-defined coupled cluster approxima-

tion to CASSCF is to include only double substitutions in the

valence space,147 whose orbitals are optimized. In the frame-

work of conventional CC theory, this defines the valence

optimized doubles (VOD) model,124 which scales as N6. This

method is available in Q-Chem but its 6th order cost makes it

prohibitive to apply to large systems. Fortunately it is possible

to further approximate VOD (in the perfect pairing space)

quite faithfully at dramatically reduced computational cost.

This can be accomplished by using the coupled cluster

perfect pairing (PP),148–150 imperfect pairing (IP)149,151 and

restricted pairing (RP) 152 models. These methods are local

approximations to VOD that include only a linear and quad-

ratic number of double substitution amplitudes respectively.

We have implemented PP, IP and RP with a new resolution of

the identity (RI) algorithm that makes them computationally

very efficient. The PP model is available with restricted and

unrestricted orbitals,150 while the IP and RP models are at

present only available with restricted orbitals. They can be

applied to systems with more than 100 active electrons, and

both energies and analytical gradients are available. This

opens up chemical applications on molecules that are many

times larger than could possibly be treated by any other active

space approach. While still more expensive than DFT or HF,

these methods are qualitatively correct for many highly corre-

lated systems that SCF cannot treat reliably.

One such application is the study of singlet molecules that

may have diradicaloid character, the extent of which can be

quantified by calculating the occupation number of the most

strongly occupied anti-bonding orbital. In an idealized singlet

diradical this would be one, whereas in an idealized closed

shell molecule, it would be zero, thus defining a convenient

(though not unique153,154) scale (0 to 100%) on which to

compare different molecules. A number of interesting studies

of this type have been reported recently155–158 using Q-Chem’s

new implementation. An example of PP calculations on a

diradical of experimental interest159 is shown in Fig. 3, which

establishes a diradical character of 17%, which, while far from

an idealized singlet diradical (100%), is still more than twice as

high as typical stable closed shell molecules. This type of

information cannot be extracted from SCF calculations.

The PP and IP models are potential replacements for HF

theory as a zero order description of electronic structure and

can be used as a starting point for perturbation theory.125 The

leading (second order) correction to the PP model, termed

PP(2), has been formulated and efficiently implemented for

restricted and unrestricted orbitals (energy only). PP(2)

Fig. 3 Diradical character in a recently synthesized159 4-membered

BPBP ring system. The lower panel shows the highest occupied orbital

(HOMO), which has an occupation number of 1.83 electrons based on

PP calculations correlating all 94 valence electrons.155,156 It is nomin-

ally bonding (through space) between the 2 boron atoms, but also

exhibits significant (through bond) neighboring group interactions.

The upper panel shows the corresponding lowest unoccupied orbital

(LUMO), which is calculated to have occupation number 0.17,

corresponding to 17% diradicaloid character.

3182 | Phys. Chem. Chem. Phys., 2006, 8, 3172–3191 This journal is �c the Owner Societies 2006
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improves upon many of the worst failures of MP2 theory (to

which it is analogous), such as for open shell radicals. PP(2) is

implemented using a resolution of the identity (RI) approach

to keep the computational cost manageable. This cost scales in

the same 5th order way with molecular size as RI-MP2, but

with a pre-factor that is about 5 times larger.

These simplified active space coupled cluster methods are

powerful and open up classes of applications that are either not

computationally feasible or not sufficiently reliable with existing

theoretical models. However, they should not be applied blindly

without an awareness of the limitations associated with the

approximations involved (limited number of doubles ampli-

tudes in a limited perfect pairing active space). One weakness of

the PP and IP models (and to some extent also the SSG model

discussed above) is occasional symmetry-breaking artifacts that

are a consequence of the limited number of retained pair

correlation amplitudes. For example, benzene in the PP ap-

proximation prefers D3h symmetry over D6h by 3 kcal mol�1

(with a 21 distortion), while in IP, this difference is reduced to

0.5 kcal mol�1 and less than 11.151 Likewise, the allyl radical

breaks symmetry in the PP model,150 although to a lesser extent

than in restricted open shell HF. Another weakness is the

limitation to the perfect pairing active space, which is not

necessarily appropriate for molecules with expanded valence

shells, such as the ScH example discussed in the previous

section, although it works well for most organic molecules.

6. Composite model chemistries

Well-defined theoretical model chemistries such as those dis-

cussed in the preceding 4 sections generally involve only two

approximations—a choice of atomic orbital basis set, and a

choice of electron correlation treatment. If one agrees to

abandon general models and make them instead system-

specific, it is also possible to greatly add to the flexibility of

the theoretical model by permitting different parts of the

system to be described differently. This could be as simple as

using different basis functions on atoms of the same type

according to their location, or it could be more drastic in order

to make modeling of much larger systems tractable. We

discuss Q-Chem 3.0’s new capabilities of this type below.

6.1 Hybrid quantum mechanics—molecular mechanics

(QM/MM) methods

Many interesting systems, particularly in the condensed phase,

are still well beyond the capacity of rigorous quantum chem-

istry methods, even with the new progress described in pre-

vious sections. To provide a tool for studying such systems,

the popular QM/MM strategy was developed by Warshel and

Levitt,160 Singh and Kollman,161 Bash et al.,162 Maseras and

Morokuma,163 and many others (see ref. 164–166 for reviews).

Within QM/MM methods, a system of interest is divided

into a central ‘‘core’’ region, which is going to be treated with

rigorous quantum chemistry methods, and its surrounding

‘‘environment’’, which is going to be treated with molecular

mechanics (MM). In Q-Chem 3.0, there are four different

types of QM/MM interfaces available, with others under

development.

(1) A fixed point charge model. If the ‘‘environment’’ is

rather rigid, then we can approximate it as a collection of point

charges at fixed positions. The QM ‘‘core’’ region is subjected

to the electrostatic potential and the Lennard-Jones potential

from the ‘‘environment’’ atoms.167 In this model,168 we

adopted the charge values and the Lennard-Jones parameters

from the AMBER force field,169 and re-optimized the

Lennard-Jones parameters for the QM atoms.

(2) A two-layer (ONIOM) model. The QM ‘‘core’’ region is

saturated with a hydrogen atom for each covalent bond at the

interface. The total energy of the system is defined additively

as163

EQM/MM = E(core)QM � E(core)MM

þ E(core þ environment)MM

Q-Chem 3.0 has the ability to use its geometry optimization

capabilities (discussed in the following section) with the hybrid

energy defined in this way.

(3) The MOLARIS simulation package.170 Q-Chem 3.0

includes the MOLARIS package which has an extensive range

of condensed phase QM/MM dynamical simulation capabil-

ities. These include calculations of solvation energies,171 cal-

culations of electronic spectra in solutions, and, with

application of proper constraints, calculations of chemical

reactions in solutions. It is also possible to perform QM/

MM calculations of chemical reactions in enzyme active

sites,172 if the system has been appropriately defined according

to the MOLARIS manual.

(4) A Q-Chem/CHARMM interface. This new software

interface fully supports Hartree–Fock (HF), Density Func-

tional Theory (DFT), and post-HF methods (MP2, RI-MP2,

CCSD) for the QM region. The standard single-link atom

approach (SLA) and the exclusion of QM/MM electrostatic

interactions of the MM host group (EXGR)173 are supported.

The current interface communicates between CHARMM and

Q-Chem via file based information sharing, which allows each

program to maintain its independence—the CHARMM

program must be obtained separately.

6.2 Continuum solvation models

Continuum solvation174,175 models the molecular solute in

quantum mechanical detail, while the surrounding solvent is

treated as a classical polarizable continuum. We have imple-

mented both the simple spherical cavity Onsager reaction field

model and the more sophisticated Langevin dipoles model176

of aqueous solvation that naturally includes dielectric satura-

tion effects. The spherical cavity model has been extended to

include analytical SCF gradients, as well as to include higher

order multipoles, via the Kirkwood treatment, and also to

treat solvent with dissolved salts, via the Debye–Hückel

approach. In addition, Q-Chem 3.0 also contains an addi-

tional polarizable continuum solvation model developed by

Chipman.177–179 This model defines the dielectric cavity as an

isodensity contour, and solves the surface and simulation of

volume polarization for electrostatics (SS(V)PE) equations

that take careful account of electrostatic effects associated

with solute charge outside the cavity. This model is available
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for self-consistent reaction field energy evaluation with HF

and DFT calculations.

7. Exploring potential energy surfaces

Theoretical chemical models such as the types discussed in the

preceding sections yield an implicit representation of the

electronic potential energy surface, as a function of the nuclear

positions. With the addition of analytic gradients with respect

to nuclear positions (available for many methods) and, when

necessary, analytical second derivatives (available only for

SCF methods, and single excitation CI for excited states180),

it is possible to ‘‘walk’’ on these surfaces to find either local

minima, saddle points, or reaction paths, and an extensive

literature has developed on this issue (e.g. ref. 181) since Pulay

originated the ability to compute analytical gradients.182

Q-Chem incorporates Baker’s OPTIMIZE package,183 includ-

ing new enhancements184 to its automatically generated inter-

nal coordinates.185,186 New capabilities are discussed below;

others are under development.187,188

7.1 Transition structure searching

Once a good approximation to the minimum energy pathway

is obtained, e.g. with the help of an interpolation algorithm

such as the growing string method, local surface walking

algorithms can be used to determine the exact location of

the saddle point. Baker’s183 partitioned rational function

optimization (P-RFO) method,189 which utilizes an approx-

imate or exact Hessian, has proven to be a very powerful

method for this purpose. Our implementation has been made

more flexible by the ability to compute analytical frequencies

in DFT and HF optimizations at prescribed intervals. An

alternative approach is the dimer method,190 which is a mode

following algorithm that utilizes only the curvature along one

direction in configuration space (rather than the full Hessian)

and requires only gradient evaluations. It is especially appli-

cable for large systems where a full Hessian calculation is very

time consuming, or for saddle point searches where the

eigenvector of the lowest Hessian eigenvalue of the starting

configuration does not correspond to the reaction coordinate.

A recent modification of this method has been developed191,192

to significantly reduce the influence of numerical noise in the

forces on the performance of the dimer algorithm, and to

significantly reduce its computational cost.

7.2 Reaction path finding

One of the difficulties associated with a saddle point search is

to obtain a good initial guess for the starting configuration

that can later be used for a local surface walking algorithm.

This difficulty becomes especially relevant for large systems,

where the search space dimensionality is high and the initial

starting configuration is often far away from the final saddle

point. A very promising method for finding a good guess for

the saddle point configuration and the minimum energy path-

way connecting reactant and product states are interpolation

algorithms. For example, the nudged elastic band meth-

od,193,194 and the string method195 start from a certain initial

reaction pathway connecting the reactant and the product

state, and then optimize in discretized path space towards the

minimum energy pathway. The highest energy point on the

resulting approximation to the minimum energy pathway

becomes a good initial guess for the saddle point configuration

that can subsequently be used with any local surface walking

algorithm. Inevitably, the performance of an interpolation

method relies heavily on the choice of the initial reaction

pathway, and a poorly chosen initial pathway can cause slow

convergence, or convergence to an incorrect pathway. The

growing string method196 offers an elegant solution to this

problem, in which two string fragments (one from the reactant

and the other from the product state) are grown until the two

fragments join. It represents a valuable, although computa-

tionally intensive, tool for exploring challenging reaction paths

and their associated transition structures.

7.3 Direct dynamics

Traditionally quantum chemistry has focused on characteriz-

ing stationary points on potential surfaces. For large systems

or even not-so-large molecules where the potential surfaces are

soft enough so that thermal energy allows the crossing of

many barriers, this static approach becomes less useful and

dynamics are required. Classical trajectories on the Born–

Oppenheimer potential energy surface are the simplest useful

treatment of molecular dynamics. For systems of just a few

atoms, or larger molecules when no bond-making or breaking

occurs, molecular dynamics can often be well-described using

empirical potentials. For systems not in these categories, it is

desirable to perform molecular dynamics directly from forces

computed via quantum chemistry,197,198 which is usually called

direct Born–Oppenheimer molecular dynamics (BOMD). We

have implemented direct dynamics for self-consistent field

(SCF) wavefunctions (i.e. density functional theory or

Hartree–Fock theory), together with an efficient Fock matrix

extrapolation procedure199 based on the suggestion of Pulay

and Fogarasi.200 This procedure greatly reduces the number of

SCF iterations required to converge at each time step, even

when moderately tight tolerances are applied, as necessary to

obtain satisfactory energy conservation. In many cases only

2–4 iterations are required, which significantly improves com-

putation time for BOMD relative to not applying extra-

polation.

It is also possible to perform extended Lagrangian ab initio

molecular dynamics (ELMD), as pioneered by Car and Parri-

nello.201 This reduces the number of SCF steps per time step to

1, at the cost of requiring a generally substantially shorter time

step in order to yield good approximations to the BO trajec-

tories. The SCF wavefunction is propagated via a fictitious

dynamics that relies on the large separation of time-scales

between electronic and nuclear motions. The version we

employ202 is distinguished by the fact that no constraints are

employed, as the variables that parameterize the fictitious

electronic dynamics are the generators of unitary rotation

matrices, and therefore automatically preserve orthogonality.

These variables are also special in that they correspond to

geodesics on this manifold, the great circle steps that are the

shortest distance between any two valid points203 (a robust

SCF procedure is also based on the same variables204,205). The

relative efficiency of BOMD and ELMD depends on the

3184 | Phys. Chem. Chem. Phys., 2006, 8, 3172–3191 This journal is �c the Owner Societies 2006
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system under consideration, and is a topic that continues to be

debated in the literature.

8. Molecular properties

8.1 Linear scaling evaluation of NMR chemical shifts

The importance of nuclear magnetic resonance (NMR) spec-

troscopy for modern chemistry and biochemistry cannot be

overestimated. Despite tremendous progress in experimental

techniques, the understanding and reliable assignment of

observed experimental spectra often remains a highly difficult

task, so that quantum chemical methods can be extremely

useful both in the solution and the solid state (e.g. ref. 206–210

and references therein). The cost for the computation of NMR

chemical shifts within even the simplest quantum chemical

methods such as Hartree–Fock (HF) or density functional

theory (DFT) approximations increases conventionally with

the third power of the molecular size, M, i.e. O(M3). There-

fore, the computation of NMR chemical shieldings has so far

been limited to molecular systems in the order of 100 atoms

without molecular symmetry. For larger systems it is crucial to

reduce the increase of the computational effort to linear, which

has been recently achieved by Kussmann and Ochsenfeld.206

In this way, the computation of NMR chemical shifts becomes

possible at both the HF and DFT levels for molecular systems

with 1000 atoms and more, while the accuracy and reliability

of these traditional methods is fully preserved.

In our formulation we use gauge-including atomic orbitals

(GIAO),211,212 which have proven to be particularly success-

ful.213 For example, for many molecular systems the HF

(GIAO-HF) approach provides typically an accuracy of

0.2–0.4 ppm for the computation of proton chemical shifts

(e.g. ref. 206–210). NMR chemical shifts are calculated as

second derivatives of the energy with respect to the external

magnetic field B and the nuclear magnetic moment mN of a

nucleus N. For the computation of the NMR shielding tensor

it is necessary to solve for the response of the one-particle

density matrix with respect to the magnetic field, so that the

solution of the coupled perturbed SCF (CPSCF) equations

either within the HF or the DFT approach is required. These

equations can be solved within a density matrix-based form-

alism for the first time with only linear-scaling effort for

molecular systems with a non-vanishing HOMO-LUMO

gap.206 The solution is even simpler in DFT approaches with-

out explicit exchange, since present density functionals are

local and not dependent on the magnetic field. The present

implementation of NMR shieldings in Q-Chem employs the

LinK (linear exchange K) method79,214 for the formation of

exchange contributions. Since the derivative of the density

matrix with respect to the magnetic field is skew-symmetric, its

Coulomb-type contractions vanish. For the remaining Cou-

lomb-type matrices the CFMM method59,215 is adapted. In

addition, a multitude of different approaches for the solution

of the CPSCF equations can be selected within Q-Chem.

Perhaps the largest molecular system for which NMR

shieldings have been computed to date contained 1003 atoms

and 8593 basis functions (GIAO-HF/6-31G*) without mole-

cular symmetry.206

8.2 Linear scaling computation of electric properties

The search for new optical devices is a major field of materials

sciences. Here, polarizabilities and hyperpolarizabilities pro-

vide particularly important information on molecular systems.

In order to predict optical properties for larger molecular

systems, Kussmann and Ochsenfeld recently developed linear-

scaling methods in order to compute the following optical

properties: static and dynamical polarizabilities, first static

hyperpolarizability, second harmonic generation, the electro-

optical Pockels effect, and optical rectification. These optical

properties can be computed for the first time using linear-

scaling methods (LinK/CFMM) for all integral contractions.

Although the present implementation available in Q-Chem

still uses MO-based time-dependent SCF (TDSCF) equations

both at the HF and DFT level, the prefactor of this O(M3)

scaling step is smaller. Here, all derivatives are computed

analytically. The third-order properties can be computed both

using a second-order TDSCF scheme or by use of Wigner’s

(2n þ 1) rule.216,217

8.3 Harmonic and anharmonic vibrational frequencies

Computing the vibrational spectrum of a molecule has become

routine, where the computed spectrum is usually based on a

potential energy surface (PES) that is assumed to be locally

quadratic about the equilibrium geometry. To obtain an

accurate harmonic spectrum at minimum computational cost,

a new density functional, empirical density functional II

(EDF2), was constructed.48 This functional is a combination

of existing functionals with the mixing parameters obtained by

minimizing the error between the computed and experimen-

tally obtained harmonic frequencies. This functional gives an

accurate description of the harmonic potential curvature. With

the cc-pVTZ basis set and ECP-containing basis sets for

heavier elements, the RMS error of the harmonic frequencies

for 315 molecules is 34 cm�1 whilst the error for the most

popular density functional, B3LYP, is 38 cm�1. Also, we

examined thermochemical properties which are related to the

depth of the potential surface. We found for the G2 dataset,

EDF2 with either 6-31þG* or aug-cc-pVTZ performs better

than B3LYP in most cases. For atomization energies, ioniza-

tion potentials, electron affinities and proton affinities, the

RMS errors for EDF2/6-31þG* are 6.17, 4.77, 4.38 and 6.38

kcal mol�1 respectively whilst for B3LYP/6-31þG*, they are

8.10, 5.05, 4.40, and 5.51 kcal mol�1. With the larger aug–

cc-pVTZ basis set, the RMS errors for EDF2 are 5.94, 4.96,

2,97 and 2.03 kcal mol�1, whilst for B3LYP the errors are

6.12, 5.28, 3.80, and 1.91 kcal mol�1.

The harmonic approximation gives rise to an error that

should be accounted for before meaningful comparisons can

be made with the anharmonic energies obtained experimen-

tally. Anharmonic effects include Fermi/Darling-Dennison

type resonances, doublet splitting, overtones and anharmonic

shifts, all of which are observed in the experimental spectrum.

Unfortunately, going beyond the harmonic approximation

requires computing third, fourth and even higher derivatives

which is extremely expensive, and most algorithms require a

computational effort that scales as Natoms
6 or worse. Several

new methods have been implemented within Q-Chem 3.0 that
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are able to compute the anharmonic correction more effi-

ciently and more accurately than existing algorithms. Two

nuclear vibration theories, vibrational configuration interac-

tion (VCI) and vibrational perturbation theory (VPT), have

been implemented.

Furthermore, a new approach that applies first-order per-

turbation theory with a transition-optimized shifted Hermite

(TOSH) function has been implemented. This introduces a

shift, s, along the mass-weighted normal coordinate. This

moves the center of the harmonic wavefunction away from

the energy minimum and gives a more appropriate wavefunc-

tion for describing the distribution of nuclei on the anhar-

monic PES. The key difference between TOSH and other

anharmonic methods that consider experimental or effective

geometries is that when one applies TOSH the derivatives are

still calculated at the bottom of the potential energy well,

whilst other approaches calculate the derivatives at the non-

stationary point. The idea of using this shifted-Hermite func-

tion may be simple, but the effect on the anharmonic correc-

tion can be dramatic. For example, most s values are smaller

than 0.7 au, but the RMS error for TOSH on 22 polyatomic

molecules is 27.03 cm�1, while for VPT2 it is 43.46 cm�1 and

for VCI (using up to four quanta) the RMS error is 30.33

cm�1. Comparing TOSH with a VCI calculation using up to

four quanta gives a better anharmonic frequency, further-

more, the relative timing is 500 times faster. In this new version

of Q-Chem, we also implemented a new finite difference

method to obtain 3rd and 4th derivatives using information

from energy, gradient, and hessian (EGH), which is faster than

using any single order of derivative. The speed is 1.25, 2 and

1.67 times faster than using only energies, gradients, or

hessians, respectively. Also, we examine the derivatives and

compute only those that are important, which saves 54 Natoms
4

for a four-mode coupling representation, and 36 Natoms
2 for a

two-mode coupling representations. These numerical speed-up

techniques along with TOSH allow anharmonic corrections to

be computed on larger systems than is otherwise possible.

8.4 Spin densities at nuclei

Gaussian basis sets violate nuclear cusp conditions.218 This

may lead to large errors in wavefunctions at nuclei, which

particularly affects spin density calculations.219 This problem

can be alleviated by using an averaging operator that com-

putes the wavefunction density based on constraints that the

wavefunction must satisfy near a Coulomb singularity.220,221.

The derivation of these operators is based on the hypervirial

theorem.220 Application to molecular spin densities for spin-

polarized221 and DFT222 wavefunctions show considerable

improvement over the traditional delta function operator.

One of the simplest forms of such operators is based on the

Gaussian weight function exp[�(Z/r0)2(r � R)2] sampling the

vicinity of a nucleus of charge Z at R. The parameter r0 has to

be small enough to neglect two-electron contributions of the

order O(r40) but large enough for meaningful averaging. A

range of values between 0.15 to 0.3 a.u. has been shown to be

adequate, with the final answer being relatively insensitive to

the exact choice of r0.
220,221 The averaging operators are

implemented for single determinant Hartree–Fock and DFT,

and the correlated SSG wavefunctions. Spin and charge

densities are printed for all nuclei in a molecule, including

ghost atoms.

9. Analysis tools

9.1 Atomic charges and population analysis

Over the years, numerous models have been proposed for the

extraction of atomic charges from the results of molecular

orbital calculations. One of the earliest of these is the Mulliken

partition but, in spite of its resilient popularity, it is one of the

least theoretically satisfactory schemes failing, in general, to

reproduce even the dipole moment of the electron density from

which it is derived. A more satisfactory approach is the widely

used natural bond order (NBO) analysis223,224 program, which

yields charges that are more stable with respect to changes of

basis than Mulliken charges, as well as the ability to analyze

bonding in terms of localized orbital contributions (see also

the following section). Q-Chem includes an interface to the

latest version of the NBO program.

We have also proposed a new method for extracting atomic

charges—multipole-derived atomic charges225—that over-

comes some of the difficulties traditionally associated with

deriving charges from electrostatic potentials. By construction,

the multipole-derived atomic charges exactly reproduce as

many as possible of the low-order multipole moments of a

system. Unlike some other approaches, they are well-defined,

do not require sampling of the electrostatic potential around

the molecule, and can be generated with little computational

effort. Nevertheless, because of the Legendre expansion, they

provide an excellent model of that potential at points outside

the van der Waals surface of the system.

9.2 Localized orbitals

The molecular orbitals (MOs) that emerge from a HF or DFT

calculation have the property that they not only make the

energy stationary but they are also the eigenvectors of the

effective one-particle Hamiltonian. Occupied MOs can thus be

mixed together without changing the energy. This mixing can

be done to extremize measures of locality such as those

proposed by Boys,226 Edmiston–Ruedenberg (ER)227 and

Pipek–Mezey,228 which can be very helpful in understanding

chemical bonding in large molecules. Q-Chem 3.0 contains an

efficient new algorithm229 designed to find localized occupied

orbitals. To make the ER orbitals computationally tractable

to optimize, auxiliary basis expansions are employed to make

the computation of electron-repulsion matrix elements rela-

tively inexpensive. We also note that geminal, PP, IP and RP

calculations (see the earlier section on coupled cluster perfect

pairing methods) lead naturally to localized orbitals by energy

minimization and those localized orbitals can also be visua-

lized and used for interpretive purposes.

9.3 Intracules

The electron density r(r) gives the probability density for

finding an electron at the point r and the momentum density

p(p) gives the analogous probability for finding an electron

with momentum p. Although these distributions are
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important, they do not provide any information about the

relative coordinates of electrons and therefore cannot easily

illuminate intrinsically two-electron phenomena such as elec-

tron correlation. Instead, one must turn to analogous two-

electron distributions,230 which are usually called intracules.

The most familiar two-electron distribution is the position

intracule P(u), which gives the probability density for the

interelectronic coordinate u = |r1 � r2|. The analogous

distribution in momentum space is the momentum intracule

M(v) which is the probability density for v = |p1 � p2|, the

analogous interelectronic coordinate in momentum space.231

A new function, the Wigner intracule W(u, v), gives the joint

probability density for finding two electrons separated by a

distance u and moving with relative momentum v. Actually,

the Wigner intracule is not a proper probability distribution

because it sometimes takes negative values but, because it

possesses many of the properties of a proper distribution, it is

often termed a ‘‘quasi-probability’’. Notwithstanding this

weakness, it appears to be a promising starting point for a

fundamentally new way of thinking about electron correla-

tion,232 which could have exciting implications for the devel-

opment of new theoretical models in the future, as well as

being useful for interpretive purposes at present. The position,

momentum and Wigner intracules233 can be computed in

Q-Chem 3.0, on a user-specified grid of u and/or v values.

10. Graphical user interfaces

Since this article is on advances in electronic structure methods

and algorithms in the Q-Chem program, which forms the so-

called computational ‘‘back-end’’ to a user-interface, we have

chosen to discuss the ‘‘front-end’’ interfaces only briefly, and

as the final topic. Q-Chem, and other electronic structure

codes can be run as text-based programs, but this is awkward

particularly for large systems. Several graphical alternatives to

text-based input and output are available. In particular, Q-

Chem 3.0 is seamlessly incorporated as the electronic structure

back-end of the Spartan user-interface and program (see

http://www.wavefun.com for details) beginning with the Spar-

tan 06 version. The public domain version of WebMO (see

http://www.webmo.net for details) is included in the Q-Chem

3.0 distribution, and we also provide scripts that support the

Molden program (http://www.cmbi.ru.nl/molden), which

permits visualization of orbitals as well as structures.

11. Conclusions

This decade continues to be a time of rapid progress for

computational quantum chemistry. In this paper, we have

first discussed briefly the state of the field, and our view of the

main challenges for the future—the quest for optimally effi-

cient algorithms, for reduced scaling of computational cost

with molecular size, for higher accuracy and highly correlated

systems, excited states, and more. The body of the paper has

then described recent developments that address many aspects

of these issues. These developments define the main new

features of version 3.0 of the Q-Chem software package

that we collaborate on (see http://www.q-chem.com for

further information). We have described advances such as an

intelligent Coulomb matrix algorithm, dual basis methods,

auxiliary basis expansions, new 4th order MP2-like methods,

spin-flip coupled cluster capabilities, geminal and perfect

pairing coupled cluster models, linear scaling NMR algo-

rithms, intracule capabilities, etc. We discussed their perfor-

mance and chemical implications, and, where appropriate,

their limitations. These developments, as discussed throughout

the paper, are a mixture of our own original contributions,

and our implementations of what we view as compelling ideas

from other groups, as will be obvious from the citations.

Stepping back from the details, we hope it is clear to the

non-specialist as well as the specialist that the fundamental

algorithms of electronic structure theory, and even the theo-

retical models that these algorithms implement are in a state of

continuing flux. On the one hand this testifies to the health of

electronic structure theory as a research area. It is simply not

yet a mature area in the sense of numerical linear algebra, or

even computational fluid dynamics, for comparison. We have

too many fundamental issues that remain at best partially

solved. On the other hand the continuing progress also hints at

the fact that the breadth of chemical (and other) applications

of these models and algorithms is expanding at a rate that is

extremely rapid. We have tried to illustrate this by presenting

comparative timings between our new and old versions where

such comparisons are possible. We have also discussed exam-

ples of chemical applications that are made possible by the

new theoretical chemical models—for instance diradicals,

triradicals, very large molecules, etc.

This scientific progress synergizes with the continuing ex-

ponential improvements in computing platforms on which

quantum chemistry calculations are performed. These expo-

nential improvements up until recently have been driven by

increasing clock speeds for serial computation. In 2000, the

typical desktop computer was driven by a processor that was

clocked at about 700 MHz and could perform typically one

add or multiply per cycle. Now clock speeds are typically

2.5 GHz, and it is common to be able to perform 2 or even 4

floating point operations per cycle, giving at least an order of

magnitude more computational capability. Looking to the

future, it appears that this progress will continue at nearly

the same rate but driven largely by multiple processors on a

given chip rather than advances in clock speeds.

The content of this paper, and the associated program

package, offers in a sense a snap-shot of the efforts of our

large and loosely connected development team to push the

state of the art in molecular electronic structure theory. We

hope that the paper conveys a little of the excitement that we

feel about progress in computational quantum chemistry, as

well as some of the physical and computational ideas that

underlie new capabilities, and some of the applications possi-

bilities. We hope it also conveys (correctly) the implication

that progress is on-going. In due course, we can look forward

to seeing many of the developments discussed here being

surpassed by future advances in our field.
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36 P. E. M. Siegbahn, J. Almlöf, A. Heiberg and B. O. Roos, J.
Chem. Phys., 1981, 74, 2384.

37 G. K. L. Chan and M. Head-Gordon, J. Chem. Phys., 2002, 116,
4462.

38 U. Schollwock, Rev. Mod. Phys., 2005, 77, 259.
39 K. Hirao, Recent Advances in Computational Chemistry, Vol. 4,

Recent Advances in Multireference Methods, World Scientific,
Singapore, 1999.

40 K. Burke, J. Werschnik and E. K. U. Gross, J. Chem. Phys., 2005,
123, 062 206.

41 A. Dreuw and M. Head-Gordon, Chem. Rev., 2005, 105, 4009.
42 H. M. Quiney, H. Skaane and I. P. Grant, Adv. Quantum Chem.,

1999, 32, 1.
43 T. Nakajima and K. Hirao, Monatsh. Chem., 2005, 136, 965.
44 W. Kohn, A. D. Becke and R. G. Parr, J. Phys. Chem., 1996, 100,

12974.
45 A. D. Becke, J. Chem. Phys., 1993, 98, 5648.
46 R. H. Hertwig and W. Koch, Chem. Phys. Lett., 1997, 268, 345.
47 A. D. Boese and J. M. L. Martin, J. Chem. Phys., 2004, 121,

3405.
48 C. Y. Lin, M. W. George and P. M. W. Gill, Aust. J. Chem., 2004,

57, 365.
49 J. Grafenstein, E. Kraka and D. Cremer, J. Chem. Phys., 2004,

120, 524.
50 S. Kristyan and P. Pulay, Chem. Phys. Lett., 1994, 229, 175.
51 M. Head-Gordon and J. A. Pople, J. Chem. Phys., 1988, 89, 5777.
52 T. R. Adams, R. D. Adamson and P. M. W. Gill, J. Chem. Phys.,

1997, 107, 124.
53 M. Dupuis, J. Rys and H. F. King, J. Chem. Phys., 1976, 65, 111.
54 J. Rys, M. Dupuis and H. F. King, J. Comput. Chem., 1983, 4,

154.
55 P. M. W. Gill, Adv. Quantum Chem., 1994, 25, 141.
56 C. A. White, B. G. Johnson, P. M. W. Gill and M. Head-Gordon,

Chem. Phys. Lett., 1994, 230, 8.
57 C. A. White and M. Head-Gordon, J. Chem. Phys., 1996, 105,

5061.
58 C. A. White and M. Head-Gordon, Chem. Phys. Lett., 1996, 257,

647.
59 C. A. White, B. G. Johnson, P. M. W. Gill and M. Head-Gordon,

Chem. Phys. Lett., 1996, 253, 268.
60 C. A. White and M. Head-Gordon, J. Chem. Phys., 1996, 104,

2620.
61 Y. H. Shao and M. Head-Gordon, Chem. Phys. Lett., 2000, 323,

425.
62 Y. H. Shao, C. A. White and M. Head-Gordon, J. Chem. Phys.,

2001, 114, 6572.
63 L. Fusti-Molnar and P. Pulay, J. Chem. Phys., 2002, 117, 7827.
64 L. Fusti-Molnar and P. Pulay, J. Chem. Phys., 2002, 116, 7795.
65 L. Fusti-Molnar, J. Chem. Phys., 2003, 119, 11080.
66 L. Fusti-Molnar and J. Kong, J. Chem. Phys., 2005, 122, 074108.
67 A. D. Becke, J. Chem. Phys., 1988, 88, 2547.
68 P. M. W. Gill, B. G. Johnson and J. A. Pople, Chem. Phys. Lett.,

1993, 209, 506.
69 S. H. Chien and P. M. W. Gill, J. Comput. Chem., 2006, 27, 730.
70 S. T. Brown and J. Kong, Chem. Phys. Lett., 2005, 408, 395.
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