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A new method based on absolutely localized molecular orbitals �ALMOs� is proposed to measure
the degree of intermolecular electron density delocalization �charge transfer� in molecular
complexes. ALMO charge transfer analysis �CTA� enables separation of the forward and backward
charge transfer components for each pair of molecules in the system. The key feature of ALMO
CTA is that all charge transfer terms have corresponding well defined energetic effects that measure
the contribution of the given term to the overall energetic stabilization of the system. To simplify
analysis of charge transfer effects, the concept of chemically significant complementary
occupied-virtual orbital pairs �COVPs� is introduced. COVPs provide a simple description of
intermolecular electron transfer effects in terms of just a few localized orbitals. ALMO CTA is
applied to understand fundamental aspects of donor-acceptor interactions in borane adducts,
synergic bonding in classical and nonclassical metal carbonyls, and multiple intermolecular
hydrogen bonds in a complex of isocyanuric acid and melamine. These examples show that the
ALMO CTA results are generally consistent with the existing conceptual description of
intermolecular bonding. The results also show that charge transfer and the energy lowering due to
charge transfer are not proportional to each other, and some interesting differences emerge which are
discussed. Additionally, according to ALMO CTA, the amount of electron density transferred
between molecules is significantly smaller than charge transfer estimated from various population
analysis methods. © 2008 American Institute of Physics. �DOI: 10.1063/1.2912041�

I. INTRODUCTION

Molecular complexes represent a broad class of systems
with interesting chemical and physical properties controlled
by the intermolecular interactions. Similarly, molecular inter-
actions determine many important properties of liquids, so-
lutions, and molecular solids. They govern physisorption in
van der Waals systems and control self-assembly and self-
organization processes in supramolecular systems.1,2 Hydro-
gen bonding plays an important role in the chemistry of nu-
merous systems, ranging from small water clusters to
nanodroplets, bulk water, and solvated biomolecules.3–7

Metal-ligand interactions give rise to a wide variety of metal
complexes with different physical properties, chemical be-
havior, and numerous practical applications.8,9 Many chemi-
cal reactions involve nondissociative molecular adsorption,
formation of �-complexes, and solvent-active site
interactions.10–12 These interactions directly affect reaction
energetics and pathways.

The strength of intermolecular binding is inextricably
connected to the fundamental nature of the interactions be-
tween molecules.13 Intermolecular complexes can be stabi-
lized through electrostatic effects �for example, charge-
charge, charge-dipole, and charge-induced dipole
interactions� and donor-acceptor type orbital interactions

such as forward and backdonation of electron density be-
tween the molecules. Depending on the extent of these inter-
actions, the intermolecular binding can vary in strength from
just several kJ/mol �van der Waals complexes� to several
hundred kJ/mol �metal-ligand bonds in metal complexes�.
Understanding the contributions of various interaction modes
may enable one to tune the strength of the intermolecular
binding to a target range by making appropriate chemical
modifications.

The demand for a physically reasonable description of
the intermolecular interaction components has resulted in nu-
merous energy decomposition analysis �EDA� schemes over
the years.14–26 Most decomposition methods represent the to-
tal interaction energy as a sum of a frozen density interaction
energy, a polarization energy, and charge transfer energy
terms. The frozen density term is calculated as the interaction
energy of the unrelaxed electron densities on the molecules
allowing only for Pauli repulsion. The polarization term is
due to the relaxation �or polarization� of the electron clouds
of the molecules in the field of each other. Quantum me-
chanically, it can be described as the energy lowering due to
the intramolecular relaxation of the molecular orbitals. Fi-
nally, the charge transfer can be pictured as the electron flow
to and from each molecule in the system due to intermolecu-
lar relaxation �or mixing� of the molecular orbitals. Although
quantitative values for charge transfer effects vary from one
EDA scheme to another, all energy decomposition methods
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give unequivocal evidence that they have significant weight
in almost all types of intermolecular interactions. In this pa-
per, we introduce a quantitative scale for measuring the de-
gree of intermolecular electron density delocalization in mo-
lecular complexes and demonstrate a direct connection of
such charge transfer effects to the energetic stabilization of
the system.

To study electron density delocalization in molecular
complexes, the system is usually partitioned into molecular
subsystems in either three dimensional space or in Hilbert
space. Methods such as the quantum theory of atoms in
molecules,27,28 the electron localization function,29–31 and
Hirshfeld analysis32 are examples of topological methods
that study the spatial distribution of scalar fields derived
from reduced electron density matrices. In this work, we are
concerned with methods based on partitioning Hilbert space.
Existing examples include such popular methods as natural
population analysis,33 Mulliken population analysis
�MPA�,34,35 Löwdin population analysis,36 and many
others.37–40 In each method in this category, one-electron ba-
sis functions �orbitals� that span the supermolecular Hilbert
space are assigned to individual molecules and the formal
charge on a molecule is calculated as a sum of the population
of all orbitals associated with the given molecule and its
nuclear charges. To obtain the orbital population and thus the
molecular formal charges, each method needs to specify a
prescription for constructing basis functions and a procedure
for treating the basis function overlap. In population analysis
�PA� methods, the intermolecular charge transfer �Q can be
inferred from the formal molecular charges �see Appendix�.

In this paper, we present another way of measuring �Q
in molecular complexes described by single-determinant
wavefunctions �Hartree–Fock or density functional theory
�DFT��. We demonstrate that, unlike �Q inferred from PA
methods, the intermolecular electron density transfer in our
approach has a corresponding well defined energy of stabili-
zation.

To isolate intermolecular charge transfer from electron
density penetration effects �i.e., spatial overlap of the unre-
laxed electron densities on the molecules� and from polariza-
tion effects �i.e., intramolecular charge reorganization in the
field of the neighboring molecules�, it is convenient to use an
intermediate partially optimized wavefunction that �i� al-
ready includes frozen density interactions �spatial overlap�,
�ii� is variationally optimized to self-consistency to include
polarization effects, and �iii� gives zero charge transfer be-
tween molecules according to some preselected population
analysis method. Employing an intermediate state �wave-
function� to isolate intra- and intermolecular electron density
reorganization effects makes such analysis closely related to
EDA methods as the latter also require an intermediate state
to separate the charge transfer energy from the rest of the
energy terms. In this work, the reference intermediate state
�wavefunction� is constructed from the variationally opti-
mized absolutely localized molecular orbitals �ALMOs�,41–47

which have been recently used for energy decomposition
methods by Mo et al.25 �BLW EDA� and by Khaliullin et al.
�ALMO EDA�.26 Unlike conventional MOs, which are gen-
erally delocalized over all molecules in the system, the

ALMOs are expanded in terms of the atomic orbitals �AOs�
of only a given molecule.25,26,41,42,44,45 It can be shown that
the MPA gives zero charge transfer between molecules for
any one-electron density matrix constructed from ALMOs.
Therefore, the state constructed from variationally optimized
ALMOs �i.e., polarized ALMOs�25,26 satisfies conditions
�i�–�iii�. Its main advantage over other ALMO states is a
fully self-consistent treatment of polarization effects. Thus,
the polarized ALMO state is particularly useful to study
charge transfer effects in molecular complexes. The self-
consistent field procedure for the variational optimization of
the ALMOs �i.e., for finding the polarized ALMO state� is
called SCF for molecular interactions, or SCF MI, and its
mathematical and algorithmic details has been described by
many authors.41,42,44,45

It has been recently shown26 that the charge transfer en-
ergy term in the ALMO EDA can be separated into forward
and backdonation components using a perturbative Roothaan
step �RS� approximation starting from the optimized ALMO
reference. In this paper, we show that a similar formulation
can also be used to separate �Q into bonding and backbond-
ing components for each pair of molecules in the complex.
The charge decomposition analysis �CDA� method of
Dapprich and Frenking48 also defined forward donation and
backbonding components of intermolecular charge transfer.
The simplicity and the ease of implementation of CDA have
made this method popular for estimating the amount of the
electron delocalization in donor-acceptor complexes. How-
ever, as mentioned in the original CDA paper,48 this defini-
tion of charge transfer should not be confused with “physical
interpretation of chemical bonding.” As shown in the
Appendix, some terms in CDA do not have a clear physical
meaning. We examine the results obtained with the CDA
method and compare them to the results of our ALMO-based
charge transfer analysis �ALMO CTA�.

In addition to quantifying the amount and energetics of
intermolecular charge transfer, it is often useful to have a
simple description of orbital interactions in intermolecular
complexes. The natural bond orbital �NBO� analysis of
donor-acceptor complexes has gained wide popularity be-
cause of its ability to provide such an orbital interaction
picture.49 In this paper, we demonstrate how the ALMO ap-
proach can be used to construct a conceptually simple orbital
interaction model. The polarized ALMOs obtained from the
SCF MI procedure and used as a reference basis set in the
decomposition analysis do not directly show which
occupied-virtual orbital pairs are of most importance in
forming intermolecular bonds. We demonstrate that, by per-
forming rotations of the polarized ALMOs within a mol-
ecule, it is possible to find a “chemist’s basis set” that repre-
sents bonding between molecules in terms of just a few
localized orbitals. This orbital interaction model validates ex-
isting conceptual descriptions of intermolecular bonding. For
example, in the modified ALMO basis, donor-acceptor bond-
ing in ammonia borane �H3N–BH3� is represented as the
lone orbital pair on the nitrogen atom donating electrons to
the empty orbital on the boron atom, and the description of
synergic bonding in metal complexes agrees well with
simple Dewar–Chatt–Duncanson model.50,51
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Summarizing, in this paper, we propose a new scale to
measure intermolecular charge transfer effects in molecular
complexes. We also show how to separate the total charge
transfer term into forward and backdonation components for
each pair of molecules in the system. Finally, we propose a
method to construct chemically significant orbitals localized
on molecules that provide a simple chemical description of
intermolecular interactions. In addition, we demonstrate that
each charge transfer term defined in this work has a corre-
sponding energy lowering that measures the contribution of
the given term to the overall energetic stabilization of the
system. Thus, the ALMO-based method proposed here uni-
fies energy decomposition analysis, charge transfer decom-
position analysis, and orbital-orbital interaction analysis for
molecular systems.

To demonstrate the validity and usefulness of the new
ALMO-based charge transfer analysis based on the abso-
lutely localized molecular orbitals �ALMO CTA�, we applied
it to a series of problems of chemical interest:

• donor-acceptor interactions in borane adducts;

• synergic bonding in classical and nonclassical metal
carbonyls; and

• multiple intermolecular hydrogen bonds in a complex
of isocyanuric acid and melamine.

We show that the ALMO CTA results are generally consis-
tent with the existing conceptual pictures of intermolecular
bonding and agree with the ALMO energy decomposition
analysis. We hope that the ALMO approach reported in this
paper will become a useful theoretical tool for studying and
analyzing binding mechanisms in molecular complexes.

II. THEORY

A. Summary of the ALMO energy decomposition
analysis

Energy decomposition methods based on ALMOs have
been proposed by Mo et al.25 �BLW EDA� and by Khaliullin
et al. �ALMO EDA�.26 In these methods, the overall binding
energy is decomposed into frozen density component �FRZ�,
polarization �POL�, and charge transfer �CT� terms

�ETOTAL = �EFRZ + �EPOL + �ECT. �1�

The frozen density term �FRZ� is defined as the SCF energy
change that corresponds to bringing infinitely separated mol-
ecules into the complex geometry without any relaxation of
the MOs on the monomers �apart from changes associated
with satisfying the Pauli principle�.

�EFRZ � ESCF�R̂FRZ� − �
x

ESCF�R̂x� , �2�

where ESCF�R̂x� is the SCF energy of the variationally opti-
mized one-electron density matrix of the isolated molecule x

with its nuclei fixed at the complex geometry and R̂FRZ is the
density matrix of the complex constructed from the unre-
laxed nonorthogonal occupied MOs of the molecules �see
Eq. �8� below�.

The polarization energy is defined as the energy lower-
ing due to intramolecular relaxation of each molecule’s ab-
solutely localized MOs in the field of all other molecules in
the system. The intramolecular relaxation is constrained to
include only variations that keep MOs localized on their
molecule:

�EPOL � ESCF�R̂POL� − ESCF�R̂FRZ� , �3�

where R̂POL is the density matrix constructed from the fully
optimized �polarized� ALMOs according to Eq. �8�. Accord-
ing to the Mulliken PA, the ALMO expansion explicitly ex-
cludes charge transfer from one molecule to another. Math-
ematical details of the SCF procedure for finding the

polarized state R̂POL are given elsewhere.41

The remaining portion of the total interaction energy, the
CT energy term, is calculated as the energy difference be-

tween the state formed from the fully relaxed ALMOs, R̂pol,
and the state constructed from the fully optimized delocal-

ized MOs, R̂SCF.

�ECT � ESCF�R̂SCF� − ESCF�R̂POL� , �4�

where �ECT includes the energy lowering due to electron
transfer from occupied orbitals on one molecule to virtual
orbitals of another molecule as well as the further energy
change caused by induction �or repolarization� that accom-
panies such an occupied-virtual mixing. In the ALMO EDA
of Khaliullin et al., the energy lowering of the occupied-
virtual excitations �mixing� is described with a single nonit-
erative RS correction starting from the converged ALMO
solution.26,41 The remaining higher order �HO� relaxation
term includes all induction effects that accompany occupied-
virtual charge transfer and is generally small,

�ECT = �ECT
RS + �ECT

HO. �5�

Most importantly, for the purpose of the energy decomposi-
tion analysis, the mathematical form of the RS energy ex-
pression allows one to decompose the occupied-virtual mix-
ing term into forward and backdonation components for each
pair of molecules in the complex,

�ECT
RS = �

x,y�x

��Ex→y
RS + �Ey→x

RS � . �6�

The HO energy contribution cannot be naturally divided into
forward and backdonation terms.26

Thus, the four states—R̂FRZ, R̂POL, R̂RS, and

R̂SCF —define energy terms in the ALMO EDA. The R̂pol

state is the lowest energy state that can be constructed from
completely localized molecular orbitals. Naturally, the elec-

tron density relaxation from R̂POL to R̂SCF provides a measure
for intermolecular charge transfer effects �Q in the system.

B. Notation

We denote polarized ALMOs as 	�xp
. The first index
indicates that this orbital is localized on �or assigned to� mol-
ecule x, and the second index refers to the number of the
orbital within the molecular subset. Latin letters x–z are for
the molecular indices, letters i–k are used to label occupied
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orbitals, a–c denote virtual orbitals, and p– t correspond to
generic �occupied and virtual� orbitals. O and V refer to the
number of occupied and virtual basis functions in the system,
respectively, N is the total number of MOs in the system. ox,
vx, and nx correspond to the number of occupied, virtual, and
total MOs on molecule x, respectively.

ALMOs are not orthogonal from one molecule to the
next and their overlap is denoted as �xp,yq= ��xp 	�yq
. The
biorthogonal basis function are denoted with superscripts,

	�xp
 = �
yq

N

	�yq
��−1�yq,xp. �7�

The one-electron density operator constructed from the
polarized ALMOs represents the projector onto the occupied
subspace and is given by

R̂ � R̂POL = �
xi,yj

O

	�xi
��o
−1�xi,yj��yj	 = �

xi

O

	�xi
��xī	 , �8�

where ��o
−1� is the inverse of the O�O overlap matrix of

occupied basis functions and should not be confused with
��−1�. Biorthogonal functions in the occupied subspace are
constructed as follows:

	�xī
 = �
yj

O

	�yj
��o
−1�yj,xi. �9�

To simplify our notation, we denote R̂POL with R̂ throughout
the paper. It is also convenient to define projector onto the

virtual subspace Q̂, the orthogonal complement of R̂,

Q̂ = 1̂ − R̂ = �
xa,yb

V

	�̃xa
��̃v
−1�xa,yb��̃yb	 = �

xa

V

	�̃xa
��̃xā	 ,

�10�

where projected virtual orbitals 	�̃ya
 span the virtual sub-
space and are orthogonal to the occupied orbitals,

	�̃ya
 = �1̂ − R̂�	�ya
 = 	�ya
 − �
xi

O

	�xī
�xi,ya. �11�

These definitions use the V�V overlap matrix of projected
virtual orbitals,

��̃v�xa,yb = ��̃xa	�̃yb
 . �12�

The biorthogonal basis in the virtual subspace is defined ac-
cording to the following equation:

	�̃xā
 = �
yb

V

	�̃yb
��̃v
−1�yb,xa. �13�

C. ALMO charge transfer analysis

The electron density reorganization from an initial state

R̂s to a final state R̂f is defined as the amount of the electron
density that, in the final state, occupies the initially unoccu-
pied subspace. Such a reorganization term is given by the
following equation:

�Q�s→f� = Tr�Q̂sR̂fQ̂s� = − Tr�R̂sR̂fR̂s − R̂s� , �14�

where Q̂s=1̂− R̂s is the projector onto the initially unoccu-
pied �virtual� subspace. Note that positive values of �Q
correspond to the negative charge being transferred.

As mentioned in the ALMO EDA section, intermolecular
charge transfer effects are measured as the change from the
polarized ALMO state to the fully converged SCF state,

�QCT � �Q�POL→SCF�. �15�

In agreement with ALMO EDA, the charge transfer due to
occupied-virtual mixing ��QCT

RS� and the accompanying
higher order relaxation terms ��QCT

HO� are defined as follows:

�QCT
RS � �Q�POL→RS�, �16�

�QCT
HO � �QCT − �QCT

RS. �17�

These definitions of �QCT
RS and �QCT

HO enable one to assign an
energy lowering to each intermolecular electron transfer
term. Since the Mulliken PA gives zero charge transfer be-
tween molecules, �QFRZ and �QPOL terms do not contribute
to intermolecular electron density transfer.

In the ALMO EDA, the single RS perturbation theory is
used to account for the energy lowering due to the occupied-
virtual mixing �ECT

RS. We will show now how the correspond-
ing charge transfer term �QCT

RS is calculated.

The RS is the search for the unitary operator Û that
minimizes the energy functional

E�Û� = Tr�F̂ÛR̂Û†� , �18�

where R̂= R̂POL and F̂ is the Fock operator constructed from
the polarized ALMOs. The post RS �transformed� operators
are given by

R̂� � R̂RS = ÛR̂Û† �19�

and

F̂� = Û†F̂Û . �20�

Then, the RS energy lowering can be written as follows:

�ECT
RS = Tr�R̂F̂�R̂ − R̂F̂R̂� . �21�

By using definition of �QCT
RS �Eq. �16�� and the general ex-

pression for charge reorganization �Eq. �14��, we have

�QCT
RS = − Tr�R̂R̂�R̂ − R̂� . �22�

There is a direct similarity between the RS energy �Eq. �21��
and charge �Eq. �22�� expressions. In the ALMO EDA, the
energy term can be readily decomposed into bonding and
backbonding components for each pair of molecules in the
complex �Eq. �6��. Here, we show how a similar approach
can be used to isolate bonding and backbonding components
of the charge transfer term. To do that, it is convenient to
rewrite Eqs. �21� and �22� in terms of the excitation operator

X̂. First, we demonstrate how the energy equation can be
rewritten �original derivation is given by Liang and
Head-Gordon52� and then show how similar results can be
obtained for the charge expression.
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Equation �20� can be written as F̂Û= ÛF̂� and then pre-

and postmultiplied by R̂ to obtain

�R̂F̂R̂��R̂ÛR̂� + �R̂F̂Q̂��Q̂ÛR̂�

= �R̂ÛR̂��R̂F̂�R̂� + �R̂ÛQ̂��Q̂F̂�R̂� . �23�

The last term in the right-hand side of Eq. �23� is zero since
the minimization of the energy functional �Eq. �18�� is

equivalent to finding Û that nullifies the virtual-occupied

block of the transformed Fock operator: Q̂F̂�R̂=0. Equation

�23� is then premultiplied by �R̂ÛR̂�−1

�R̂ÛR̂�−1�R̂F̂R̂��R̂ÛR̂� + �R̂ÛR̂�−1�R̂F̂Q̂��Q̂ÛR̂� = R̂F̂�R̂ .

�24�

The obtained expression for R̂F̂�R̂ is plugged into Eq. �21�,
and the terms inside the trace are rearranged as follows:

�ECT
RS = Tr��R̂F̂Q̂��Q̂ÛR̂��R̂ÛR̂�−1� . �25�

Defining a new operator as

X̂ � Q̂ÛR̂�R̂ÛR̂�−1, �26�

we have the following equation for the Roothaan step energy
lowering:

�ECT
RS = Tr�R̂F̂Q̂X̂� . �27�

It can be shown that the newly defined operator X̂ rep-

resents a Cayley generator of unitary transformation Û,53

Û = �1̂ + X̂ − X̂†��1̂ + X̂†X̂ + X̂X̂†�−1/2, �28�

and is directly related to the first-order transformation of the
zero-order orbitals

Û = 1̂ + X̂ − X̂† + O�X̂2� . �29�

Operator X̂ satisfies the projection relation X̂= Q̂X̂R̂ by defi-
nition. Therefore, the ALMO occupied orbitals are mixed
only with the zero-order virtual orbitals upon first-order

transformation �Eq. �29��. Thus, operator X̂ is referred to as
excitation operator and its matrix elements represent excita-
tion amplitudes from the occupied to the virtual orbitals.

The excitation amplitudes can be found by solving the
following single RS quadratic equation:53

Q̂F̂R̂ + Q̂F̂Q̂X̂R̂ − Q̂X̂R̂F̂R̂ − Q̂X̂R̂F̂Q̂X̂R̂ = 0. �30�

The operator X̂ obtained from this equation gives the RS
energy lowering that is equvalent to the result of single Fock
matrix diagonalization or to the infinite-order single excita-
tion perturbation theory result.41,52,53

We can express �QCT
RS in terms of the excitation operator

X̂. First, equation R̂�Û= ÛR̂ is pre- and postmultiplied by R̂:

�R̂R̂�R̂��R̂ÛR̂� + �R̂R̂�Q̂��Q̂ÛR̂� = R̂ÛR̂ , �31�

and then the resulting Eq. �31� is postmultiplied by �R̂ÛR̂�−1:

R̂R̂�R̂ = R̂ − �R̂R̂�Q̂��Q̂ÛR̂��R̂ÛR̂�−1. �32�

Next, the obtained expression for R̂R̂�R̂ is substituted into
Eq. �22� and is simplified by using the definition of the ex-
citation operator �Eq. �26��:

�QCT
RS = Tr�R̂R̂�Q̂X̂� . �33�

Equation �33� gives the total amount of charge transfer

from the occupied subspace to the virtual subspace of R̂

� R̂pol when this state is relaxed to R̂�� R̂RS. Equation �27�
gives the energy lowering associated with this charge trans-
fer.

In the next step, we partition the total charge transfer
into the pairwise contributions assigned to electron flow
from an individual occupied orbital to an individual virtual
orbital. To do this, we introduce a set of partition operators,

each corresponding to an occupied �P̂xi� or to a virtual �P̂xa�
orbital. These operators must satisfy the resolution of iden-
tity property

�
xi

O

P̂xi = R̂ , �34�

�
xa

V

P̂xa = Q̂ , �35�

and the idempotency property

P̂xi
2 = P̂xi, �36�

P̂xa
2 = P̂xa. �37�

Using these partition operators, we define charge transfer
from orbital xi to orbital ya and its corresponding energy as
follows:

�Qxi→ya
RS = Tr�P̂xiR̂�P̂yaX̂� , �38�

�Exi→ya
RS = Tr�P̂xiF̂P̂yaX̂� . �39�

Charge transfer from molecule x to molecule y and its energy
are then expressed as

�Qx→y
RS = �

i

ox

�
a

vy

Tr�P̂xiR̂�P̂yaX̂� , �40�

�Ex→y
RS = �

i

ox

�
a

vy

Tr�P̂xiF̂P̂yaX̂� . �41�

Properties �34� and �35� ensure that the charge and energy
components sum up to the correct total values:

�QCT
RS = �

x,y
�Qx→y

RS = �
xi

O

�
ya

V

�Qxi→ya
RS , �42�

�ECT
RS = �

x,y
�Ex→y

RS = �
xi

O

�
ya

V

�Exi→ya
RS . �43�
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It should be noted that �QCT
RS and �ECT

RS do not depend on

the choice of partition operators �P̂xq�. Their values are de-
fined by the natural and unambiguous partitioning of the

Hilbert space into occupied �R̂� and unoccupied �Q̂� sub-
spaces. However, when one attempts to define forward and
backbonding components of these terms, it is impossible to
avoid ambiguities associated with the partitioning of the oc-
cupied and virtual spaces into molecular �or orbital� sub-
spaces. In other words, there is no unique definition for op-

erators P̂xq. This problem is closely related to the problem of
describing charge distribution among nonorthogonal sub-
spaces associated with orbitals, atoms, or molecules in PA
methods. The most widely used partition operators in PA are
Mulliken and Löwdin operators.34–36,54 Mulliken partition
operators are not Hermitian which sometimes leads to un-
physical negative orbital populations and the population of
some orbitals being higher than two. It can be shown, how-
ever, that the deviations from the physical �0, 2� interval are
second order in the overlap between the orbitals.40 Such de-
viations can be considered acceptable in many applications
especially for partitioning electron density in molecular com-
plexes since overlap effects between molecules in such com-
plexes are generally smaller than, for example, overlap be-
tween atoms in molecules. Orbital populations obtained from
the Löwdin partitioning are always within the physical
interval but the basis set functions cannot be made strictly
localized in this approach.

A Mulliken-type partitioning defined by the following
equations:

P̂xi = 	�xi
��xī	 , �44�

P̂xa = 	�̃xa
��̃xā	 �45�

is the best choice for the ALMO decomposition analysis
since �i� the polarized reference gives zero intermolecular
charge transfer according to the Mulliken PA and �ii� the
charge transfer energy terms within a molecule, �Ex→x

RS , are
zero if the Mulliken-type partitioning is used because the
variational optimization of ALMOs nullifies intramolecular
occupied-virtual elements of the contravariant-covariant ma-

trix of the Fock operator ��xī	F̂	�̃xa
 �see Eq. �47� below�.
Matrix equations for intermolecular charge transfer compo-
nents and their energy on the basis of the polarized ALMOs
with the Mulliken-type partitioning are as follows:

�Qx→y
RS = �

i

ox

�
a

vy

��xī	R̂�	�̃ya
��̃yā	X̂	�xi
 = Tr�R�xy�� X�yx�� ,

�46�

�Ex→y
RS = �

i

ox

�
a

vy

��xī	F̂	�̃ya
��̃yā	X̂	�xi
 = Tr�F�xy�X�yx�� ,

�47�

where R�xy�� and F�xy� are ox�vy matrices and X�yx� is a
vy �ox matrix.

The same partitioning of the charge transfer energy term
is used in the ALMO EDA.26 Our tests show that the

Löwdin-type partitioning �i.e., symmetric orthogonalization
of the occupied and projected virtual orbitals� produces re-
sults that are close to the Mulliken-type analysis. However,
intrafragment components are slightly larger in the Löwdin-
type approach due to partial delocalization of ALMOs after
symmetric orthogonalization.

D. Significant complementary occupied-virtual pairs

Equations �46� and �47� clearly show that in the canoni-
cal polarized ALMO, basis charge transfer from molecule x
to molecule y is represented as each occupied orbital on x
donating electrons to each virtual orbital on y. In general,
there are no occupied-virtual pairs in this representation that
can be neglected. However, orbital rotations within the occu-
pied subset and the virtual subset of a molecule leave �Qx→y

RS

and �Ex→y
RS unchanged. Thus, we can use this freedom to find

such unitary matrices Ux
�o� and Ux

�v� that rotate orbitals within
the occupied subset of molecule x and the virtual subset of
molecule y, respectively, to perform singular value decom-
position of X�yx�:

X�yx� = Uy
�v�x�yx�Ux

�o�†, �48�

where the vy �ox matrix x�yx� contains min�vy ,ox� singular
values of X�yx� on the diagonal and zeros off the diagonal.
Because of the diagonal structure of x�yx�, in the new repre-
sentation, charge transfer from x to y is described as each
occupied orbital on x donating electrons to only one
�complementary� virtual orbital on y. If ox�vy, then
�ox−vy� occupied orbitals on x will not participate in the
intermolecular bonding between x and y at all:

�Qx→y
RS = Tr��Ux

�o�†R�xy�� Uy
�v���Uy

�v�†X�yx�Ux
�o���

= Tr�r�xy�� x�yx�� , �49�

�Ex→y
RS = Tr��Ux

�o�†F�xy�Uy
�v���Uy

�v�†X�yx�Ux
�o���

= Tr�f�xy�x�yx�� . �50�

Orbitals constructed by performing unitary transformations
Ux

�o� within the occupied subset of molecule x and Uy
�v� within

the virtual subset of molecule y are called complementary
occupied-virtual pairs �COVPs� for the x→y intreaction.
Construction of the COVPs greatly simplifies the picture of
intermolecular orbital interactions. A set of all complemen-
tary occupied-virtual pairs describes charge transfer between
a pair of molecules exactly. We will show in Sec. III that the
major contribution to bonding between two molecules �in
terms of both energy and amount of electrons transferred�
comes from just a few �one or two� COVPs, which we will
call significant complementary occupied-virtual pairs. Such
pairs provide approximate simplified representation of inter-
molecular orbital interactions which is useful for a concep-
tual description of intermolecular bonding.

E. Counterpoise correction

The basis set superposition error �BSSE� is not intro-
duced when the absolutely localized MOs are used to calcu-

late the intermediate state R̂POL because the constrained MO
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optimization prevents electrons on one molecule from bor-
rowing the AOs of other molecules to compensate for incom-
pleteness of their own AOs. However, the BSSE enters the
charge transfer contribution since both the BSSE and charge
transfer result from the same physical phenomenon of delo-
calization of fragment MOs. All charge transfer terms re-
ported in this work ��ECT, �QCT, and their components� are
counterpoise corrected.

The charge transfer obtained from the fully converged
SCF calculations are corrected using the standard counter-
poise correction method of Boys and Bernardi.55 In this
method, full SCF calculations are performed for each mol-
ecule with the ghost orbitals in place of all orbitals of the
other molecules. All charge transfer terms calculated with the
single RS method are BSSE corrected using similar single
RS counterpoise calculations. In this modification of the
original Boys–Bernardi method, calculations are also per-
formed separately for each molecule and the ghost orbitals
also replace orbitals on the rest of the molecules. However,
instead of full SCF calculations, only one RS is performed
by solving the amplitude equation �Eq. �30�� starting from
the fully converged orbitals of the isolated molecule with no
ghost orbitals.

The difference between the Roothaan step counterpoise
correction, �EBSSE

RS ��QBSSE
RS �, and the variational �Boys–

Bernardi� correction, �EBSSE ��QBSSE�, can be treated as
higher order BSSE and is generally very small �see Sec. III�.

III. RESULTS AND DISCUSSION

The ALMO CTA and ALMO EDA algorithms were
implemented in the Q-CHEM software package.56 We also
implemented the Dapprich–Frenking CDA and PA methods
to compare them to the ALMO decomposition analysis. We
verified that our implementation of CDA reproduces litera-
ture results.48 Charge transfer terms for the Mulliken PA and
CDA are calculated according to Eqs. �A9� and �A12�, re-
spectively. All charge transfer terms presented in this paper
are BSSE corrected. The BSSE is presented in the tables just
to show the degree of the basis set completeness.

When �QCT
RS is partitioned into pairwise molecule-to-

molecule contributions, small spurious negative intramolecu-
lar, �Qx→x, terms are often observed. Such negative terms
arise from overlap effects and are common in all methods
that use Mulliken-type �biorthogonal basis� treatment of the
orbital overlap and disappear if Löwdin-type �symmetric or-
thogonalization� partitioning is used. These negative in-
trafragment transfer terms can, in principle, be removed by

excluding intramolecular excitation terms from the X̂ opera-
tor when solving Eq. �30�. However, the spurious terms are
usually significantly smaller that the dominant intermolecu-
lar terms and do not complicate the analysis. In order to keep
the theory simple, we did not attempt to remove them in this
work.

A. Simple two-orbital system: Minimal basis H2

Before using ALMO CTA on real chemical systems, we
would like to apply it to a simple system of two closed shell
ions H− �fragment A� and H+ �fragment B� that interact with

each other to form a closed shell molecule, H2. This example
will help us to illustrate several important concepts and to
clarify the difference between the PA methods and ALMO
CTA. For the sake of simplicity, we consider a restricted
minimal basis set case, so each fragment in the system has
only one molecular orbital. The process of the H2 molecule
formation can be represented by three states schematically
shown in Fig. 1.

�1� In the initial state of infinitely separated ions, the or-
bital on H−, 	�A
, is doubly populated and the orbital on
H+, 	�B
, is empty �Fig. 1�a��.

�2� In the intermediate state, the ions are brought to their
equilibrium geometry in the H2 molecule but their den-
sities are not allowed to relax �Fig. 1�b��. The molecu-
lar orbital overlap in this state is �AB= ��A 	�B
.

�3� In the final state, R̂SCF, the density is relaxed to self-
consistency �Fig. 1�c��.

Our main goal is to quantify the amount of charge trans-
fer when the molecule is formed. To make this example more
illustrative, we compare ions A and B to two cities A and B.
Figure 1 may then be regarded as showing three population
snapshots in the history of the cities:

�1� City A is populated and city B is not built yet
�Fig. 1�a��.

�2� City B is built in the close proximity of A �Fig. 1�b��
but the new houses are still empty.

�3� People moved from city A to new houses in city B, and
the final population density is uniform �Fig. 1�c��.

In this analogy, finding the degree of charge transfer is
equivalent to answering the question “How many people
moved after city B was built?.” The answer to the demo-
graphic question is relatively simple: All people who live in
the new houses did move �it is, of course, assumed that
people who are still in A did not move from one apartment to
another�. Mathematically, the answer is the integral of the
final population density over the white area in Fig. 1�b�. Note
that it would be incorrect to integrate over the area of city B
in an attempt of finding the answer �in fact, we do not even
have to define the area of city B yet�.

Therefore, to find the amount of electron transfer �Q, it

is necessary to integrate the final electron distribution R̂SCF,
over the previously “unoccupied” Hilbert subspace which is

spanned by the projected orbital B, 	�̄B
:

	�̃B
 = �1̂ − R̂�	�B
 =
1

�1 − �AB
2

�	�B
 − 	�A
�AB� , �51�

FIG. 1. �Color online� A simple system of two subsystems.
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�Q = ��̃B	R̂SCF	�̃B
 = 1 − �AB. �52�

Equation �52� is exactly our main working equation
�Eq. �14�� applied to a two-orbital system with one occupied
and one virtual orbital. For the H2 molecule with the inter-
atomic distance 0.700 Å and with the STO-3G basis set
functions on the atoms ��AB=0.686�, the charge reorganiza-
tion from the intermediate state to the final state is 0.314ē.
There is no electron reorganization going from the initial to
the intermediate state since the electron densities are kept
fixed.

In a PA, one determines the amount of electron density
that “belongs” to each hydrogen atom in the final state. To do
this, it is necessary to specify how the Hilbert space is par-
tioned among the overlaping reference atomic orbitals. This
problem is similar to finding the final population of each city
in Fig. 1�c� and requires integration over the area of the city.
In Mulliken PA, population of orbitals are calculated as di-
agonal elements of the density matrix in the “natural”
contravariant-covariant �or biorthogonal� representation. In
the H2 case, the initial and the final population of orbital B
are 0ē and 1ē, respectively:

popB�RFRZ� = ��B	R̂FRZ	�B
 = 0, �53�

popB�RSCF� = ��B	R̂SCF	�B
 = 1, �54�

	�B
 =
1

1 − �AB
2 �	�B
 − 	�A
�AB� , �55�

�Q�MPA� = popB�RSCF� − popB�RFRZ� = 1. �56�

Therefore, it is said that the formal charges on atoms in the
H2 molecule are zero and that one electron is transferred
from H− to H+ when the H2 molecule is formed �see Eq. �A9�
in Appendix�.

In PA, electron transfer effects are inferred from inte-
grating over the orbital 	�B
 not over the unoccupied sub-

space defined by projected orbital orbital 	�̃B
. This is the

main reason for the difference between the CTA and PA re-
sults. This difference is not surprising since these two meth-
ods are designed to solve different problems �transfer versus
population�. CTA measures charge transfer effects with well
defined energies, while PA values for charge transfer are con-
sistent with the formal charges on atoms. A detailed compari-
son of ALMO CTA and PA is presented in the Appendix.

B. Donor-acceptor interactions in H3B–CO
and H3B–NH3

Donor-acceptor bonding is a central concept in
chemistry.57–59 Borane compounds such as ammonia borane
�H3B–NH3� and borane carbonyl �H3B–CO� are textbook
examples of donor-acceptor complexes. Donor-acceptor
bonding in these compounds has been the subject of numer-
ous experimental60,61 and theoretical studies.19,25,48,62–66

ALMO energy decomposition analysis25,26,66 as well as ap-
plication of other EDA methods19,63 have shown that the
electronic structure of ammonia borane is correctly described
by a simple Lewis structure with the nitrogen atom donating
its lone electron pair into the empty orbital of the boron
atom. The donor-acceptor bonding in borane carbonyl has
more complicated character with significant contribution of
back-donation of the electron density from BH3 to
CO.26,48,63,65

The standard Kohn–Sham DFT with the B3LYP func-
tional and 6-31�+, + �G�d , p� basis set was used to obtain the
complex geometries. Decomposition analysis was performed
using the same functional for a series of five basis sets from
the 6-31G family with increasing number of polarized and
diffuse functions on atoms �Table I�. The ALMO decompo-
sition method demonstrates very good stability: Both energy
and charge components change only slightly as the basis set
size increases. As shown before,26 the total interaction ener-
gies are approximately the same for H3B–NH3 and
H3B–CO but the fundamental nature of donor-acceptor in-
teractions is very different �Table I�. While H3B–NH3 is
better stabilized by noncharge transfer interaction ��EFRZ

TABLE I. B3LYP ALMO CTA and EDA results for borane complexes. Geometry is optimized at B3LYP /6-31�+, + �G�d , p� level. Basis sets used for ALMO
analysis are �1� 6-31G, �2� 6-31G�d , p�, �3� 6-31�+, + �G�d , p�, �4� 6-31�+, + �G�df , pd�, and �5� 6-31�2+ ,2+ �G�df , pd�. All terms are BSSE corrected.

Basis

H3B–CO H3B–NH3

Scale �Q �mē� �E �kJ/mol� �Q �mē� �E �kJ/mol�

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

FRZ 0 232 274 317 313 315 0 −5 45 103 106 106
POL 0 −127 −164 −203 −222 −227 0 −67 −89 −128 −132 −133
RS�D→D�a −3 −5 −7 −7 −8 0 −5 −8 −5 −5 −2 0
RS�D→BH3�a 46 45 46 40 41 −140 −145 −143 −126 −123 55 58 58 26 53 −113 −124 −134 −131 −130
RS�BH3→D�a 196 173 180 178 178 −132 −128 −131 −129 −128 5 5 8 8 8 −6 −9 −11 −11 −11
RS�BH3→BH3� −5 −4 −5 −8 −8 0 −1 −1 −1 −1 −2 0
HO-CT −21 −15 −20 −22 −22 −9 −11 −8 −6 −6 −1 0 2 2 2 0 −2 −3 −3 −3
TOTAL 213 195 195 182 181 −177 −173 −168 −170 −170 53 54 61 59 59 −190 −178 −172 −172 −172
BSSE 7 5 1 1 1 15 11 3 5 5 10 9 3 3 3 16 13 6 7 6
RS-BSSE 6 4 1 1 1 14 10 3 5 5 8 7 3 3 3 15 12 6 7 6
MPA TOTAL 739 835 1005 1019 1000 N/A 319 374 543 559 435 N/A
MPA Q�BH3� 53 −90 −324 −283 −416 −243 −299 −538 −551 −743

aD stands for CO in BH3–CO and for NH3 in BH3–NH3.
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and �EPOL� than H3B–CO, the charge transfer effects in the
latter are stronger due to backdonation from H3B to CO.

�QCT
RS terms �Table I� show no evidence of significant

backdonation in H3B–NH3, which is in excellent agreement
with the energy terms. The electronic structure of this com-
plex is well described by the single RS—the higher order
relaxation terms are very small. By contrast, the backdona-
tion term in H3B–CO is stronger than forward donation and
the occupied-virtual mixing is accompanied by strong induc-
tion �i.e., �QCT

HO is not negligible�.
It is remarkable that the ratio of the backbonding and

forward donation terms in borane carbonyl is significantly
different on the charge and energy scales ��Qback /�Qforw


4, whereas �Eback /�Eforw
1�. In the perturbation theory,
which describes the charge transfer correction to the zero-
order polarized state �Eqs. �46� and �47��, �Q terms are pro-
portional to the product of the single excitation amplitudes
with the density matrix elements ��Q�Ria� Xai�, whereas �E
terms are proportional to the product of the amplitudes with
the Fock matrix elements ��E�FiaXai�. Therefore, the ratio
of the relative strength of forward and backward charge
transfer on the charge and energy scale is determined by the
ratio of the corresponding Fock and density matrix elements:

�Qback/�Qforw

�Eback/�Eforw
�

Fforw

Fback

Rback�

Rforw�
. �57�

For H3B–CO, the ratios of the matrix elements correspond-
ing to the most significant charge transfer terms �see COVPs
below� are Fforw /Fback
2 and Rback� /Rforw� 
2. This example
illustrates the value of the charge scale introduced in this
work and shows that �-bonding �backdonation� in borane
carbonyl is approximately four times weaker than �-bonding
�forward donation� if measured in terms of energy/per elec-
tron transferred.

The absolute values of �Q show that intermolecular
charge transfer effects are significantly smaller than those
inferred from the Mulliken population analysis �Table I�. The
ALMO CTA intermolecular electron transfer does not exceed
0.06ē in H3B–NH3 and 0.20ē in H3B–CO, whereas MPA
predicts transfer of approximately 0.50ē in H3B–NH3 and
1.00ē in H3B–CO. Moreover, MPA predicts that the BH3

fragment is negatively charged, in disagreement with ALMO
CTA which gives stronger donation from BH3. As shown in

the Appendix, the major difference between ALMO CTA and
MPA is in the treatment of virtual orbitals. ALMO CTA uses
projected virtual orbitals to ensure that all measured charge
transfer effects are only due to relaxation of the localized
occupied orbitals into the virtual subspace. Such delocaliza-
tion has a well defined energy since �E can be assigned only
to charge transfer to the strongly orthogonal virtual subspace.
In PA methods, which are originally constructed to measure
formal charges on the fragments, virtual orbitals are treated
on the same footing with occupied orbitals. Therefore, for-
mal charges and �Q inferred from PA methods include both
the effect of relaxation of the occupied orbitals �i.e., true
delocalization� as well as the effect of occupied-virtual over-
lap �see the H2 example above and the Appendix for a de-
tailed comparison of these two methods�. It is also not un-
common for MPA to predict charges of the wrong sign even
in very simple systems.67

Of course, construction of the projected virtual orbitals
in ALMO methods unavoidably destroys absolute locality of
the virtual orbitals �Eq. �11��. We verified, however, that the
degree of such a delocalization is not significant. Moreover,
ALMO CTA calculations with very compact STO-3G basis
set reproduce the results presented in Table I. Therefore, all
charge transfer terms in ALMO CTA have properly localized
donor and acceptor centers. We conclude that despite the
common view on the bonding in borane carbonyl, CO is a
better Lewis acid than BH3.

We also performed the CDA proposed by Dapprich and
Frenking.48 CDA is based on the same principles as MPA
and, therefore, also produces large charge transfer terms
�Table II�. As demonstrated in the Appendix, some of the
CDA terms do not have clear physical meaning. For ex-
ample, intramolecular virtual-virtual terms do not correspond
to any physical effect and can be of the same order of mag-
nitude as the forward donation and backbonding terms
�Table II�.

It is interesting to note that small charge transfer terms
�i.e., similar to ALMO CTA� are obtained for H3B–NH3 in
the work of Mo and Gao.68 To calculate the amount of elec-
tron density transferred from NH3 to BH3, these authors ap-
plied natural population analysis to the polarized reference
and to the fully relaxed wavefunction and took the difference
of the charges on NH3. In this approach the polarized refer-

TABLE II. Dapprich–Frenking CDA for borane complexes. Geometry is optimized at
B3LYP /6-31�+, + �G�d , p� level. Basis sets used for CDA analysis are �1� 6-31G, �2� 6-31G�d , p�, �3�
6-31�+, + �G�d , p�, �4� 6-31�+, + �G�df , pd�, and �5� 6-31�2+ ,2+ �G�df , pd�. All terms are in mē and are not
BSSE corrected.

Scale
Basis

H3B–CO H3B–NH3

1 2 3 4 1 2 3 4

2*�Q�occ�D�→vir�BH3��a 537 538 458 432 345 411 383 376

2*�Q�occ�BH3�→vir�D��a 301 340 342 300 −4 31 −97 −154

2*�Q�occ�D�→occ�BH3��a −349 −218 −381 −437 −417 −328 −642 −688

2*�Q�vir�D�→vir�BH3��a −4 −3 −34 −31 −4 −13 −50 −61

�Q�vir�D�→vir�D��a 201 194 202 207 15 19 55 63
�Q�vir�BH3�→vir�BH3�� 280 357 348 324 136 186 188 191

aD stands for CO in BH3–CO and for NH3 in BH3–NH3.
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ence state also plays the key role but this method incorrectly
produces nonzero charge transfer for the polarized state. It
would also fail to separate �Q into forward and backdona-
tion components for systems in which both effects are im-
portant �e.g., H3B–CO�.

Absolutely localized complementary occupied-virtual
pairs for borane complexes at the equilibrium geometry were
constructed at the B3LYP /6-31�+, + �G�d , p� level of theory.
The most significant orbitals for forward donation and back-
bonding are shown in Fig. 2. In agreement with the classical
donor-acceptor theory, the donating occupied orbitals on
NH3 and CO fragments closely resemble sp3-hybridized lone
pairs while the virtual orbitals are sp3-hybridized empty or-
bitals on the boron atom. These pairs recover more than 95%
of the overall charge transfer in this direction. The backbond-
ing complementary orbital pairs in H3B–CO are doubly de-
generate and each recover 48%–49% of backdonation �only
one of the two degenerate orbitals is shown in Fig. 2�.
Figure 2 indicates that backdonation occurs from the B–H
�-bonding orbitals to the antibonding �* orbital of the CO
molecule.

C. Bonding in carbonyl complexes

The CO ligand is one of the most important ligands in
chemistry of transition metals. The metal-carbonyl bonding
is a classic example of the Dewar–Chatt–Duncanson model

of synergic bonding in metal complexes.50,51 According to
this model, the carbonyl ligand donates an electron pair from
the occupied antibonding orbital on the carbon atom �so-
called 5� orbital� into the metal unoccupied orbitals, and the
metal donates the electron density back from its occupied
orbitals into the carbonyl �*-antibonding orbitals.69,70 As a
result of the metal-ligand interaction, metal-carbonyl com-
plexes exhibit C–O stretching frequencies that are shifted
from the frequency of the free CO molecule. In “classical”
carbonyl complexes, the C–O stretching frequency is lower
than in isolated CO. This shift is interpreted as a result of
strong backdonation into the antibonding �* orbitals of the
CO molecule which weakens the C–O bond.70 In another
class of metal-carbonyl complexes, called “nonclassical” car-
bonyls, the C–O stretching mode is close to or even higher in
energy than that in free CO.71–74 This unusual behavior is
attributed to donation from the CO antibonding 5� orbital
without compensating backdonation into the CO antibonding
�* orbitals.48,71,73,74

The relative strength of forward donation and backbond-
ing effects in metal-carbonyl complexes can be made quan-
titative with ALMO CTA. In this work, we applied ALMO
decomposition to typical nonclassical complexes-AgCO+

and AuCO+, and to a classical carbonyl-W�CO�6. Complex
geometries were optimized using the B3LYP density func-
tional with the effective core potential LANL2DZ basis for
the metal atoms and the 6-31+G�d� basis for all other atoms.
The EDA calculations are also done at the
B3LYP /LANL2DZ /6-31+G�d� level and the results are
summarized in Table III.

As evident from the computed bond lengths and vibra-
tional frequencies �Table III�, the C–O bond, indeed, be-
comes shorter and stronger in nonclassical carbonyls,
AgCO+ and AuCO+. The opposite trend is observed for clas-
sical W�CO�6. In agreement with the widely accepted under-
standing of bonding in carbonyls, the backbonding charge
transfer energy components are smaller relative to the for-
ward donation terms in nonclassical carbonyls, whereas
�EM→CO

RS in the classical carbonyl is noticeably larger than
�ECO→M

RS .
The same trends are observed on the charge scale. The

only exception is that forward- and backdonation terms on
the charge scale in AuCO+ are of the same magnitude, while
forward donation is twice as large as backdonation on the
energy scale �for explanations, see the H3B–CO example
above�. To verify that our method properly separates
forward-donation and backbonding terms in AuCO+ we ap-
plied ALMO CTA to AuCN and compared results for these
two complexes �Table III�. CO is known as a strong, well
balanced �-donor and �-acceptor, while the CN− ligand is a
good �-donor and very poor �-acceptor. ALMO CTA cor-
rectly predicts large forward-donation and negligible back-
bonding for AuCN.

Based on the results of ALMO CTA and ALMO EDA,
we conclude that backbonding in nonclassical carbonyls is
not negligible even though this effect is smaller than forward
donation. Backdonation to the CO virtual antibonding orbit-
als does not fully compensate for forward donation from the
occupied CO orbitals in nonclassical carbonyls. The back-

FIG. 2. �Color� Significant COVPs in borane complexes calculated at the
B3LYP /6-31�+, + �G�d , p� level. Isovalue surface of 0.15 a.u. Occupied or-
bitals are represented with saturated colors. Faint colors represent comple-
mentary virtual orbitals. D stands for CO in BH3-CO and for NH3 in
BH3-NH3.
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bonding term in the classical tungsten carbonyl is signifi-
cantly stronger that the forward donation term. The relative
strength of these terms explain blue and red shifts in vibra-
tional spectra of coordinated CO in nonclassical and classical
carbonyls.74

This explanation is supported by the more detailed
COVP analysis which shows that in both classes of carbonyl
complexes almost 100% of forward donation is recovered
with a single COVP. The shape of the occupied orbital of this
COVP �Fig. 3� is exactly the shape of the HOMO of the CO
molecule �5� orbital�. The backdonation to the CO antibond-
ing doubly degenerate �* orbitals recovers 100% of the
transfer in classical carbonyls and 77% in nonclassical car-
bonyls. The remaining 23% of backdonation in nonclassical
complexes is due to the transfer into the �* orbital of CO
�Fig. 3�.

D. Multiple intermolecular bonds in a complex
of isocyanuric acid and melamine

Isocyanuric acid �1,3,5-triazine-2,4,6-trione� and
melamine �1,3,5-triazine-2,4,6-triamine� are thought to be a
major cause of two outbreaks of pet food-associated renal
failure in cats and dogs.75 Although neither of these chemi-
cals is individually toxic, it is believed that their potency
may increase when they are present together.76 Isocyanuric
acid �ICA� and melamine �MA� can form networks of hydro-
gen bonds, creating a tilelike planar structure through mo-
lecular self-assembly.1 Three hydrogen bonds formed in the
planar ICA-MA complex are shown in Fig. 4 �complex 1�.
We apply ALMO decomposition to isolate electron transfer
effects associated with individual hydrogen bonds in the
complex. To verify accuracy of the decomposition, we also
compare ALMO CTA results for the planar complex and the
complex in which ICA and MA molecules lie in perpendicu-
lar planes �complex 2� and in which only one hydrogen bond
between the interacting molecules is formed.

Geometry optimization and EDA calculations were per-

formed using the B3LYP density functional with the
6-31�+, + �G�d , p� basis set for all atoms in the system. The
results are summarized in Table IV.

In the planar complex, charge transfer from MA to ICA
is 19.2 mē and charge transfer in the opposite direction is
8.0 mē. The energy lowering corresponding to these delocal-
ization effects is proportional to the amount of charge trans-
fer and are 32.3 kJ /mol and 15.3 kJ /mol, respectively. In-
tramolecular effects and the higher order relaxation are
small. Charge and energy terms in each directions can be
further decomposed into molecular orbital contributions.
COVP decomposition shows that 93% of �EMA→ICA

RS and
95% of �QMA→ICA

RS result from electron donation from the
nitrogen’s lone pair in MA to the N–H �-antibonding orbital
in ICA �Fig. 5�. Two COVPs contribute to this effect. Occu-
pied orbitals in these COVPs are different linear combina-
tions of sp2-hybridized lone pair orbitals on nitrogen atoms
in the aromatic ring of MA. Charge transfer in the opposite
direction is primarily due to interactions of the lone pairs on
oxygen atoms in ICA with N–H �-antibonding orbitals in
MA �Fig. 5�. Again, two COVPs, symmetric and antisym-
metric �Fig. 5�, contribute to this effect. They account for
64% and 71% of �EICA→MA

RS and �QICA→MA
RS , respectively.

The remaining charge transfer in this direction is covered by
the other 31 COVPs, none of which exceeds 12% and 10%
of �EICA→MA

RS and �QICA→MA
RS , respectively.

The ALMO decomposition results for complex 1 can be
compared to the decomposition for complex 2, in which only
one hydrogen bond is formed between the interacting frag-
ments. The difference in �EFRZ and �EPOL between complex
1 and complex 2 can be explained by purely electrostatic
effects: Oxygen and hygrogen atoms of the peripheral hydro-
gen bonds have partial charges of the opposite sign and are
closer to each other in complex 1. This leads to stronger
electrostatic attraction between MA and ICA and also to
stronger mutual polarization in complex 1 compared to com-
plex 2. As expected, charge transfer from ICA to MA in
complex 2 is negligible and charge transfer in the opposite
direction is very close to that in complex 1. COVP decom-

TABLE III. ALMO CTA and EDA results for carbonyl complexes. Geometry optimization and decomposition analysis are performed at
B3LYP /LANL2DZ /6-31+G�d� level. All terms are BSSE corrected.

Scale

Ag+–CO Au+–CO �CO�5W–CO Au+–CN−

�Q �mē� �E �kJ/mol� �Q �mē� �E �kJ/mol� �Q �mē� �E �kJ/mol� �Q �mē� �E �kJ/mol�

frz 0.0 22.0 0.0 180.3 0.0 138.4 0.0 −388.4
pol 0.0 −60.8 0.0 −159.1 0.0 −68.7 0.0 −205.4
RS�M→M� −0.4 0.0 5.3 0.0 −2.8 0.0 14.0 0.0
RS�M→L�a 12.0 −14.1 55.5 −66.9 245.9 −141.7 16.7 −31.2
RS�L→M�a 27.8 −37.0 58.9 −132.8 37.3 −101.0 205.7 −259.3
RS�L→L�a −12.9 0.0 −6.5 0.0 8.2 0.0 −46.7 0.0
HO-CT 5.9 −3.1 33.5 −17.2 −27.7 −11.8 −5.9 −0.8
TOTAL 32.3 �93.1 146.8 �195.8 260.9 �184.8 183.6 �885.2
BSSE 0.9 1.9 0.8 2.4 2.2 6.6 1.1 2.6
RS-BSSE 0.8 1.8 0.7 2.3 2.0 6.4 1.0 2.5
d�C–O /N� �Å�b 1.126 1.126 1.151 1.166
	�C–O /N� �cm−1�b 2305 2302 2056 2273

aL stands for CO in the carbonyl complexes and for CN− in the Au+–CN− complex.
bd�C–O�=1.137 Å and 	�C–O�=2203 cm−1 in the uncoordinated CO molecule. d�C–N�=1.183 Å and 	�C–N�=2125 cm−1 in the uncoordinated CN− anion.
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position for MA→ ICA terms in both complexes are almost
identical. Small electron transfer effects from ICA to MA in
complex 2 do not have dominant terms in the COVP decom-
position.

Based on these results we conclude that in the planar
complex delocalization effects for the central N¯H hydro-
gen bond is approximately four to five times stronger
�19.2 mē and 32.3 kJ /mol� than for the peripheral O¯H
bond �4.0 mē and 7.7 kJ /mol�.

IV. CONCLUSIONS

Energy decomposition methods based on absolutely lo-
calized orbitals �ALMO� have been succesful in studying

and analyzing binding mechanisms in numerous molecular
complexes.25,26,66–68,77–79 The ALMO energy decomposition
analysis �EDA� �Refs. 25 and 26� enables accurate separation
of the total intermolecular interaction energy into intramo-
lecular �frozen density and polarization� terms and intermo-
lecular �charge transfer� energy terms.

In this paper, we have extended decomposition analysis
method based on absolutely localized molecular orbitals
�ALMO�. First, we proposed a quantitative scale to measure
intermolecular charge transfer effects. All terms on this scale
such as forward-donation, backdonation, and higher order
relaxation have well defined energetic effects consistent with
the previously defined energy terms in ALMO EDA. Second,
we introduced concept of chemically significant complemen-
tary occupied-virtual orbital pairs which provides a simple
description of electron transfer effects in intermolecular in-
teractions.

The newly proposed generalized ALMO decomposition
method has been tested successfully on systems involving
hydrogen bonding and donor-acceptor interactions. For cases
such as borane complexes, metal carbonyls, and complexes
with hydrogen bonding ALMO decomposition analysis re-

FIG. 3. �Color� Significant COVPs in metal-carbonyl complexes calculated
at the B3LYP /LANL2DZ /6-31�+�G�d� level. Isovalue surface of 0.1 a.u.
Occupied orbitals are represented with saturated colors. Faint colors repre-
sent complementary virtual orbitals.

FIG. 4. Complex of isocyanuric acid and melamine �complex 1�.

TABLE IV. ALMO CTA and EDA results for complexes of isocyanuric acid
�ICA� with melamine �MA�. Geometry optimization and decomposition
analysis are performed at B3LYP /6-31�+, + �G�d , p� level. All terms are
BSSE corrected.

Scale

Complex 1 Complex 2

�Q �mē� �E �kJ/mol� �Q �mē� �E �kJ/mol�

FRZ 0.0 2.8 0.0 18.8
POL 0.0 −29.2 0.0 −18.2
RS�MA→MA� −2.5 0.0 −3.1 0.0
RS�MA→ ICA� 19.2 −32.3 18.4 −30.0
RS�ICA→MA� 8.0 −15.3 0.4 −1.2
RS�ICA→ ICA� −1.1 0.0 0.1 0.0
HO-CT 3.1 −2.9 1.6 −1.7
TOTAL 26.8 �76.1 17.4 �32.4
BSSE 1.1 4.7 1.1 3.3
RS-BSSE 1.1 4.6 1.0 3.2
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FIG. 5. �Color� Significant COVPs in complexes of isocyanuric acid �ICA� and melamine �MA� calculated at the B3LYP /6-31�+, + �G�d , p� level. Isovalue
surface of 0.07 a.u. Occupied orbtials are represented with saturated colors. Faint colors represent complementary virtual orbitals.
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sults are broadly consistent with existing understanding of
intermolecular bonding. However, according to ALMO
charge transfer analysis the amount of electron density trans-
ferred between molecules is significantly smaller than charge
transfer estimated from various population analysis methods.
Additionally, charge transfer and the associated energy low-
ering are by no means directly proportional to each other, as
might sometimes be naively assumed. For example in
H3B–CO, the magnitude of charge backdonated by BH3 ex-
ceeds that forward donated by CO by a factor of approxi-
mately four, although forward and back-donation yield simi-
lar energy lowering.
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APPENDIX:

Comparison of ALMO CTA to population analysis
and charge decomposition analysis

As we show in Sec. II, charge transfer effects measured
in the ALMO CTA methods are different from charge trans-
fer inferred from the population analysis methods. The major
difference between ALMO CTA and population analysis is
the way the Hilbert space of the molecular complex is parti-
tioned. The population analysis methods are specifically de-
signed to calculate formal charges on molecules in molecular
complexes �see below�. In these methods, the entire Hilbert
space spanned by nonorthogonal reference orbitals is divided

into molecular subspaces with partition operators P̂x
�pa�:

P̂x
�pa� = �

p

nx

	�xp
��xp	 � �P̂x
�pa��†. �A1�

Although these operators satisfy the idempotency and reso-
lution of identity conditions

�P̂x
�pa��2 = P̂x

�pa�, �A2�

�
x

P̂x
�pa� = 1̂, �A3�

they do not represent true projectors since they are generally
non-Hermitian. Therefore, we say that the Hilbert space is
vaguely partitioned into molecular subspaces in the PA meth-
ods.

In contrast, ALMO CTA is constructed to measure the
amount of charge reorganization in the final electronic state
with respect to some reference state. For the final electronic
state, this method calculates the amount of the electron den-
sity that occupies the initially unoccupied subspace �see
Eq. �14��. Therefore, ALMO CTA first of all partitions the
entire Hilbert space of the reference state into the strongly
orthogonal occupied and virtual subspaces with true projec-

tors R̂ and Q̂. Only then, if one is interested in forward do-
nation and backbonding components of the total charge
transfer term, both the occupied and virtual subspaces are
vaguely partitioned into molecular subspaces with operators

P̂x
�o� and P̂x

�v�:

P̂x
�o� � �

i

ox

	�xi
��xī	 = �
i

ox

P̂xi, �A4�

P̂x
�v� � �

a

vx

	�̃xa
��̃xā	 = �
a

vx

P̂xa. �A5�

Non-Hermitian idempotent operators P̂x
�o� and P̂x

�v� are not

true projectors. In this sense, they are similar to P̂x
�pa�. How-

ever, they sum up to projectors R̂ and Q̂ which do define the
occupied and virtual subspaces:

�
x

P̂x
�o� = R̂ , �A6�

�
x

P̂x
�v� = Q̂ . �A7�

It is important to note that the proper definition of these
subspaces allows one to assign the energetic components to
charge transfer terms because the corresponding energy low-
ering is unambiguously defined only for charge transfer from
the occupied subspace to the unoccupied subspace
�Eq. �21��. The lack of well defined occupied and unoccupied
subspaces in the population analysis makes these methods
inapplicable for studying charge transfer. Thus, ALMO CTA
gives the correct intermolecular electron transfer and the en-
ergy associated with it, whereas PA methods produce the
proper formal charges on molecules.

The CDA method48 attempts to quantify the degree of
electron delocalization in molecular complexes. As we show
below, CDA uses partitioning operators similar to the
Mulliken population analysis operators �Eq. �A1�� and, there-
fore, suffers from the same shortcomings as the PA methods
when it is applied to study electron density relaxation. CDA
employs the frozen density state as a reference state, whereas
ALMO CTA uses the polarized state. The latter is a more
appropriate reference for studying intermolecular electron
density transfer since the results are not contaminated by
intramolecular relaxation effects. Another serious drawback
of CDA is that some terms obtained in this method do not
have clear physical interpretation.

A detailed mathematical description of the PA methods
and CDA is presented below.

Population analysis

Any one-electron density operator R̂f �usually con-
structed from delocalized occupied molecular orbitals� can
be the subject of population analysis �PA� in some localized
basis set, 	�xp
. The electronic population of molecule x is
usually defined as the expectation value of �a generally non-

Hermitian� operator �P̂x
�pa�R̂fP̂x

�pa��:
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popx�R̂f� = �
p

nx

��xp	R̂f	�xp
 = Tr�P̂x
�pa�R̂fP̂x

�pa�� , �A8�

where 	�xp
 denotes basis orbitals and P̂x
�pa� is the partition

operator associated with the Hilbert subspace of molecule x
�Eq. �A1�� that must satisfy the idempotency �Eq. �A2�� and
resolution of identity �Eq. �A3�� conditions. The formal

charge of molecule x is obtained by summing popx�R̂f� and
the nuclear charges of the atoms in the molecule.

If nonorthogonal canonical orbitals of isolated mol-

ecules, which define the R̂FRZ state, are used as basis func-
tions, Eq. �A8� represents the Mulliken population analysis
�MPA�.34,35 If the basis orbitals are symmetrically orthogo-
nalized then the partiton operators become Hermitian, and
Eq. �A8� describes Löwdin population analysis.36 Weinhold’s
analysis49 utilizes a basis set of so-called natural bond orbit-
als that are orthogonal by construction �expanded in terms of
the underlying basis set of occupancy-weighted symmetri-
cally orthogonalized natural atomic orbitals� and can also be
described by Eq. �A8�. It is important to state that there is no
clearly “best” method for allocating a charge distribution
among nonorthogonal subspaces associated with orbitals, at-
oms or molecules. For example, Mulliken analysis can pro-
duce orbital populations outside physical range �0,2�,
whereas in Löwdin analysis the basis functions are not
strictly localized after the symmetric orthogonalization is
performed �the same is true for natural bond orbitals�.

Formal charges on molecules obtained from population
analysis do not provide full information about electron reor-
ganization and binding in the system. For example, in a com-
plex with synergic bonding, the analysis of molecular formal
charges does not capture full complexity of charge transfer
effects in the complex. In population analysis methods, the
total charge transfer is calculated as the population of all
virtual orbitals in the final state:

�Q�pa� � �
x

popx
�v��R̂f�

= �
x

Tr�V̂x
�pa�R̂fV̂x

�pa��

= − �
x

�Tr�Ôx
�pa�R̂fÔx

�pa�� − ox� , �A9�

where partition operators Ôx
�pa� and V̂x

�pa� �Ôx
�pa�+ V̂x

�pa�

= P̂x
�pa�� are associated with the occupied and virtual orbitals

of molecule x, respectively,

Ôx
�pa� = �

i

ox

	�xi
��xi	 , �A10�

V̂x
�pa� = �

a

vx

	�xa
��xa	 . �A11�

Note that operators Ôx
�pa� and V̂x

�pa� are not projectors onto the
occupied and virtual subspaces. Their sums over all mol-
ecules do not give proper projectors either �compare them to

operators P̂x
�o� and P̂x

�v� defined in the context of ALMO CTA
in Eqs. �A4� and �A5��.

Charge decomposition analysis „CDA…

For systems comprising more than two molecules, it is
often important to know not only how much charge is trans-
ferred to a molecule but also where it came from, i.e., to find
forward donation and backbonding components for each pair
of molecules in the system. The PA methods are unable to
provide this level of detail. In the CDA method of Dapprich
and Frenking,48 the amount of charge transferred from the
occupied orbitals on molecule x to the virtual orbitals on
molecule y is defined as follows:

�Qocc�x�→vir�y�
�CDA� = �

i

ox

�
a

vy

��ya	R̂f	�xi
�xi,ya

= Tr�V̂y
�MPA�R̂f�Ôx

�MPA��†� . �A12�

The basis functions used in CDA are converged canonical
orbitals of isolated fragments �FRZ basis� and a Mulliken
partitioning �denoted with the MPA superscript� is used.

The CDA has proved useful for comparative studies of
charge transfer but there are several problems with adopting
such a definition for �Qocc�x�→vir�y�

�CDA� . First, the CDA definition

of the charge transfer components is not consistent with the
definition of �Q�MPA� given by Eq. �A9� even though the
starting point for deriving the CDA expression is the
Mulliken PA,

�
x,y

�Qocc�x�→vir�y�
�CDA� � �Q�MPA�. �A13�

Second, it is very hard to assign physical meaning to
often large negative terms corresponding to mixing occupied
orbitals on one fragment with occupied orbitals on another:

�Qocc�x�→occ�y�
�CDA� = �

i

ox

�
j

oy

��yj	R̂f	�xi
�xi,yj

= Tr�Ôy
�MPA�R̂f�Ôx

�MPA��†� . �A14�

The original assignment of these terms to polarization effects
does not agree with a widely accepted view that polarization
effects correspond to occupied-virtual orbital mixing within
a molecule. Even though the reference orbitals are not opti-
mized for intrafragment relaxation in CDA, intrafragment
occupied-virtual charge transfer terms are always zero in this
method. This is because orbitals within a molecule can al-
ways be orthogonalized thus giving zero � matrix elements
in Eq. �A12� for �Qocc�x�→vir�x�

�CDA� .

Third, large intermolecular virtual-virtual terms
��Qvir�x�→vir�y�

�CDA� � and �generally small� intramolecular virtual-

virtual ��Qvir�x�→vir�x�
�CDA� � do not have a clear physical meaning

either.
Finally, CDA does not produce correct charge transfer

results in the limit of orthogonal basis orbitals because of the
direct inclusion of the overlap matrix into each charge trans-
fer term. Therefore, zero charge transfer is produced for any
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density matrix, R̂f, for all methods in which virtual orbitals
are orthogonal to the occupied orbitals, and for all systems in
which charge transfer occurs between spatially separated
fragments.

Most importantly population analysis and CDA methods
do not define occupied and virtual subspaces for the
reference state and, therefore, produce electron density
reorganization effects without corresponding well defined
energies of charge transfer.
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