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An efficient method for removing the self-consistent field �SCF� diagonalization bottleneck is
proposed for systems of weakly interacting components. The method is based on the equations of
the locally projected SCF for molecular interactions �SCF MI� which utilize absolutely localized
nonorthogonal molecular orbitals expanded in local subsets of the atomic basis set. A generalization
of direct inversion in the iterative subspace for nonorthogonal molecular orbitals is formulated to
increase the rate of convergence of the SCF MI equations. Single Roothaan step perturbative
corrections are developed to improve the accuracy of the SCF MI energies. The resulting energies
closely reproduce the conventional SCF energy. Extensive test calculations are performed on water
clusters up to several hundred molecules. Compared to conventional SCF, speedups of the order of
�N /O�2 have been achieved for the diagonalization step, where N is the size of the atomic orbital
basis, and O is the number of occupied molecular orbitals. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2191500�
I. INTRODUCTION

Weakly bonded molecular complexes represent a broad
class of systems with interesting chemical and physical prop-
erties. Intermolecular forces determine many important prop-
erties of liquids and solutions, and govern physisorption in
van der Waals systems.1 They also control self-assembly and
self-organization processes in supramolecular systems such
as supramolecular polymers and liquid crystals.2 Hydrogen
bonding, one of the most abundant types of intermolecular
interactions, plays an important role in the chemistry of nu-
merous systems, ranging from small water clusters to nano-
droplets, and finally bulk water, as well as solvated
biomolecules.3,4 Because of their broad importance, there is
considerable interest in developing theoretical approaches
for describing interactions of weakly bonded ensembles of
molecules.

First principles electronic structure methods are already
playing an important role in the study of molecular clusters
and liquids. Their applications range from high accuracy cal-
culations on small- to medium-sized clusters5–7 to more ap-
proximate calculations of dynamics of molecules in the con-
densed phase.8,9 The building block for virtually all
electronic structure methods is the self-consistent field �SCF�
model,10 which is the basis of all Kohn-Sham density func-
tional theory �DFT� models,11 as well as Hartree–Fock-based
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molecular orbital theory.10 From the computational stand-
point, SCF calculations involve two computationally signifi-
cant steps that are repeated on each iteration. First is the
assembly of the effective Hamiltonian �or Fock operator� for
the current set of molecular orbitals. Second is the diagonal-
ization of this Fock operator in an orthogonalized basis to
yield an improved set of molecular orbitals.

Developing efficient algorithms for both of these steps
has attracted much attention over the past decade. Advances
in methods for the formation of the Coulomb,12–17 exact
exchange,18,19 and exchange-correlation20,21 parts of the Fock
matrix have made it possible to achieve linear scaling with a
relatively low prefactor for this part of the SCF procedure.
Thus, the diagonalization of the Fock matrix, which scales
cubically with the system size, becomes the bottleneck for
calculations for large systems.22 A number of alternative
methods have been proposed for updating the molecular or-
bitals �or the one-particle density matrix� which are capable
of yielding linear scaling.23–25 However, for dense three-
dimensional systems, these methods become effective only
for very large system sizes, because they depend upon orbital
localization which requires length scales of roughly ten at-
oms in a line �i.e., on the order of 1000’s of atoms�.23,26 This
is too large for routine use at present.

It is also possible to consider customizing the SCF pro-
cedure for particular physical systems, either for physical or
computational advantage. The importance of intermolecular
interactions has motivated the development of several modi-

27–30
fied SCF methods for weakly bonded systems. These
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methods focus primarily on an a priori elimination of the
basis set superposition error �BSSE� from the interaction en-
ergy between fragments. All proposed formulations are based
on expansion of molecular orbitals �MOs� in local subsets of
atomic orbitals �AOs�. Such an expansion leads to absolutely
localized MOs �ALMOs� for which the only computational
disadvantage is their nonorthogonality. Stoll et al.31 were the
first to generalize the SCF equations for the nonorthogonal
ALMOs. All other authors have used equivalent equations in
their BSSE-free methods. As proposed by Nagata et al.,29

such schemes will be referred to as locally projected self-
consistent field for molecular interactions �LP SCF MI� or,
simply, SCF MI. In this work, we first show how the utiliza-
tion of the SCF MI equations replaces diagonalization with a
procedure that has better scaling properties and reduces com-
putational time significantly even for systems of moderate
size. A concise derivation of the SCF MI equations is pre-
sented in Sec. II.

It is known that the iterative procedure for solving SCF
equations is slow without a proper acceleration scheme. Di-
rect inversion in the iterative subspace �DIIS�,32,33 the most
successful acceleration scheme for the SCF method, cannot
be used for SCF MI without proper generalization for the
case of nonorthogonal MOs. We next show how the equation
for the Pulay DIIS error vector can be generalized for the
case of ALMOs so as to enable efficient solution of the SCF
MI equations. The DIIS scheme presented here is a useful
alternative to the DIIS-accelerated SCF MI method proposed
previously.34 The DIIS error vector equation derived in this
paper reproduces the conventional Pulay equation if the lo-
cality constraint on MOs is lifted. It also enables faster
evaluation of the error vector than the equation used previ-
ously.

As have been shown by Hamza et al.,35 confinement of
MOs to a fragment leads to an underestimation of the bind-
ing energies between the fragments �it is a constraint upon
the interacting fragments, that has no effect when they are
noninteracting�. However, this error can be reduced using
perturbation theory. Nagata and Iwata36 have proposed inclu-
sion of a perturbative correction by calculating Hamiltonian
elements between the ground SCF MI wave function and
singly excited wave functions. They demonstrated that this
method gives the binding energies that are very close to the
full SCF energies for water dimer. However, the formalism
behind their method is somewhat involved and the resulting
locally projected single excitation second-order Moller-
Plesset �LP SE MP2� perturbation method is not readily ap-
plicable to large systems. Here, we present an alternative
perturbative correction scheme that scales cubically with the
size of the system and test it on water clusters to show that
the final results are close to those obtained from full SCF
calculations.

Therefore, this paper describes modifications and im-
provements to the original SCF MI method that make it prac-
tical for calculations on the Hartree–Fock �HF�/DFT level for
large closed-shell systems of weakly interacting closed-shell

fragments.
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II. THEORY

The following notation is used throughout the paper.
u–z: fragment indices, Greek letters: AO indices, i–m: occu-
pied MO indices, a and b: virtual MO indices, p and q:
generic MO indices, ��x��: AO localized on fragment x,
��xi�: spatial MO localized on fragment x, N: total number of
AOs in the system, O: total number of doubly occupied MOs
in the system, V: total number of virtual spatial MOs in
the system, F: number of fragments, nx: number of AOs on
fragment x, ox: number of doubly occupied MOs on fragment
x, �x: number of virtual spatial MOs on fragment x,
o=maxx�1¯F�ox�, n=maxx�1¯F�nx�, �=maxx�1¯F��x�.

We use tensor algebra to work with the nonorthogonal
atomic basis set.37 There is one important exception, how-
ever, which is that the Einstein convention does not imply
summation over fragment indices.

A. SCF MI equations

In the first step, the atoms and the electrons of the entire
system are logically divided into nonoverlapping subsets.
These subsets are referred to as fragments, and each frag-
ment must contain a specified integer number of electrons.
To meet this definition, each fragment must represent a part
that interacts weakly with the rest of the system. For ex-
ample, in molecular clusters the boundaries between the
fragments must not cross covalent bonds in the molecules.

It is worth noting that such a division scheme uses natu-
ral partitioning of the system. It does not rely on any distance
cut-off thresholds and, therefore, produces smooth potential
energy surfaces as long as fragments retain their chemical
identity. Within this restriction, it satisfies the requirements
of a well-defined theoretical model chemistry.38 Upon the
division the AOs localized on the atoms also become parti-
tioned into subsets ���x���, where the first index denotes a
subset and the second is the number of the basis function
within the given subset.

In the next step, the occupied MOs on a fragment are
expanded in terms of AOs of the same fragment,

��xi� = ��x��T · xi
x� · , �1�

where the MO coefficients T · yi
x� · are constrained to be zero

for x�y. These constraints produce MOs that are localized
on fragments in the same sense as AOs are localized on
atoms. Thus, such MOs are called absolutely localized MOs.
Expansion �1� excludes charge transfer from one fragment to
another, which is undesirable, as this is a physical effect that
can play a role in phenomena such as hydrogen bonding. It
also prevents electrons on one fragment from borrowing the
atomic orbitals of other fragments to compensate for incom-
pleteness of their own AOs, which is desirable, since this
basis set superposition effect will unphysically lower the in-
teraction energy.

The constrained MOs are not orthogonal from one frag-
ment to the next �imposing such orthogonality would be an
additional constraint that cannot be physically justified�.

Their overlap is described by the covariant � matrix,
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�yj,xi = 	�yj��xi� , �2�

and the inverse overlap is the contravariant �−1 matrix,

�yj,xi 
 ��−1�yj,xi. �3�

The electronic HF energy of a closed-shell determinant is

E = �
x

F

	�xi�ĥ + f̂ ��xi� , �4�

where the core Hamiltonian ĥ and the Fock operator f̂ have
their usual definitions and the contravariant MOs ��xi� are
defined as

��xi� = �
y

F

��yj��yj,xi. �5�

Stoll et al.31 have shown that the variation of E with respect
to the occupied MOs ��xi� is given by

�E = 4	��xi��1̂ − �̂� f̂ ��xi� , �6�

where �̂ is the one-particle density operator,

�̂ = �
x

F

��xi�	�xi� . �7�

Therefore, the necessary condition for a minimum of the
energy with constraints �1� is

�1̂ − �̂� f̂ ��xi� = 0. �8�

Equation �8� is the generalized SCF equation. It degenerates
to the conventional SCF equation in the case of orthonormal
MOs,

f̂ ��xi� = ��xi��xi, �9�

where the matrix elements 	�yj� f̂ ��xi� are assumed to be
�xi�yj,xi.

For partitioned systems, Eq. �8� can also be cast into an
eigenvalue form using a Hermitian operator for each frag-
ment x,

�̂x = ��xi�	�xi� , �10�

that by definition has the property,

�̂x��xi� = ��xi� . �11�

The left-hand side of Eq. �8� then may be rewritten as fol-
lows:

�1̂ − �̂ + �̂x� f̂ ��xi� − �̂x f̂ ��xi� = �1̂ − �̂ + �̂x� f̂�1̂ − �̂ + �̂x���xi�

− ��xj�	�xj� f̂ ��̂xi� . �12�

As in the conventional HF equation, it can be assumed that

	�xj� f̂ ��xi�= 	�xj� f̂G
x ��xi�=�xi�ij. Thus, Eq. �8� now reads as

f̂G
x ��xi� = �1̂ − �̂ + �̂x���xi��xi, �13�
with the projected Fock operator,
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f̂ G
x 
 �1̂ − �̂ + �̂x� f̂�1̂ − �̂ + �̂x� . �14�

The AO representation of Eq. �13� gives the matrix equation
�23� that reproduces equations published by Gianinetti et
al.27,28 without derivation.

Stoll et al.31 have derived a similar equation in the same
way but using a non-Hermitian equivalent of the fragment
density operator,

ŝx = ��xi�	�xi� , �15�

and assuming �without loss of generality� that the MOs are
orthogonal within a fragment. The final Stoll equation has
the form

f̂ S
x��xi� = ��xi��xi, �16�

with a different projected Fock operator,

f̂ S
x 
 �1̂ − �̂ + ŝx†� f̂�1̂ − �̂ + ŝx� . �17�

It can be derived from Eq. �8� using the following properties
of ŝx:

ŝx��yi� = �xy��yi� , �18�

ŝx��xi� = ��xi� . �19�

A projected equation of a slightly different form was used by
Nagata et al.29,36

f̂N
x ��xi� = �1̂ − p̂�x���xi��xi, �20�

where

f̂N
x 
 �1̂ − p̂�x� f̂�1̂ − p̂�x� , �21�

p̂�x 
 �
y�x

F

�
z�x

F

��yj����x�yj,zk	�zk� . �22�

These equations can also be derived from �8� with the as-
sumption that the diagonal blocks of the inverse MO overlap
are unit matrices. The detailed derivation can be found in the
original paper.36

Multiplying Eqs. �13�, �16�, and �20� by 	�x�� from the
left one gets the matrix equations

�fA
x �xx�T�xx = �SA

x �xx�T�xx���xx. �23�

Here, the fragment Fock matrix elements, �fA
x �x�,x	


	�x�� f̂A
x ��x	�, are matrix elements of the corresponding

projected Fock operators f̂A
x , where A=G ,S ,N for the formu-

lations of Gianinetti, Stoll, and Nagata, respectively.
The fragment overlap matrix elements are defined as

Sx�,x	
x 
	�x���1̂− �̂+ �̂x���x	� for the Gianinetti equations,

Sx�,x	
x 
Sx�,x	 for the Stoll equations, and Sx�,x	

x


	�x���1̂− p̂�x���x	� for the Nagata equations. The eigen-
value matrix � is an N
N diagonal matrix, and �. . .�xy de-
notes xth, yth block.

We have already emphasized that the locally projected
formulation of the SCF equations excludes BSSE and
charge-transfer effects. From a computational standpoint, it

is now clear that the main accomplishment of Eq. �23� is the
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replacement of the diagonalization of the full N
N Fock
matrix f with separate diagonalizations of F projected Fock
matrices fx �nx
nx�, one for each fragment. As will be
shown below this leads to a significant speedup in the MO
update routine in the SCF iterations. Computational aspects
of the approaches of Gianinetti, Stoll, and Nagata will be
compared in Sec. III.

B. DIIS error vector

In the case of the orthogonal MOs a new idempotent
density operator �̂ may be obtained as a unitary transforma-

tion Û of the initial operator �̂0. The unitary transformation

Û can be parametrized by an anti-Hermitian operator �̂,

�̂ = �
i

O

Û��i
0�	�i

0�Û† = e−�̂�̂0e�̂ � �̂0 − �̂�̂0 + �̂0�̂ . �24�

The infinitesimally small transformation of the density ma-
trix in the atomic orbital “covariant integral representation”39

is

R̃�� = 	����̂���� = R�� − ��	S	�R�� + R�	S	����. �25�

The DIIS error vector is usually given by the derivative of
the total electronic energy,

E = R̃���h�� + f̃��� , �26�

with respect to the parameters ��
,

�err�
� 

 �E
���



�=0
=

�E

�R̃��

 �R̃��

���
 

�=0

= 2f��
 �R̃��

���
 

�=0

= 2�f
�R��S�� − S
�R��f��� . �27�

A nonsingular operator V̂, which is not necessarily unitary,
transforms the orbitals in the case of the nonorthogonal
MOs. The infinitesimally small transformation can be ex-

panded in terms of operator �̂ as V̂=1̂− �̂ ignoring the

higher-order terms in �̂. Transformation V̂ must preserve the

block-diagonal structure of T and, therefore, �̂ is represented
as

�̂ = �
x

F

�̂x, �28�

with

�̂x = ��x���x�,x�Sx�,x		�x	� �29�

and

�̂x† = − ��x	�Sx	,x��x�,x�	�x�� . �30�

The infinitesimally transformed density operator is

�̂ = �
x,y

F

�1̂ − �̂x���xi
0 �����̂��xi,yj	�yj

0 ��1̂ − �̂y†� , �31�

and, therefore, the transformed density matrix in the covari-

ant integral representation is
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R̃z�,w� = 	�z���̂��w��

= �T · zi
z� · − �z�,z�Sz�,z	T · zi

z� ·�������zi,wj


�Twj ·
· w� + Twj ·

· w	Sw	,w��w�,w�� , �32�

with the MO overlap matrix � changing as a function of �̂,

����ul,yp = 	�ul
0 ��1̂ − �̂u† − �̂y���yp

0 �

= �ul,yp + Tul ·
· u	Su	,u��u�,u�Tu�,yp

− Tul,y��y�,y�Sy�,y	T · yp
y	 · . �33�

Just as in �27�, the DIIS error matrix is defined as the deriva-
tive of the energy �26� with respect to parameters �x�,x
,

�err�x
,x� 

 �E

��x�,x


�=0

= �
z,w

F
�E

�R̃z�,w�

 �R̃z�,w�

��x�,x




�=0

= �
z,w

F

2fw�,z�
 �R̃z�,w�

��x�,x




�=0
, �34�


 �R̃z�,w�

��x�,x




�=0
= �wx�
�Rz�,w	Sw	,x� − �zx���Sx
,z	Rz	,w�

+ T · zi
z� ·
 �������zi,wj

��x�,x
 

�=0

Twj ·
· w�, �35�


 �������zi,wj

��x�,x
 

�=0

= − �
u,y

F

�zi,ul
 �������ul,ym

��x�,x
 

�=0

�ym,wj ,

�36�


 �������ul,ym

��x�,x
 

�=0

= �uxTul ·
· u	Su	,x�Tu
,ym

− �yxTul,y�Sx
,y	T · ym
y	 · . �37�

Combining Eqs. �34�–�37� one obtains

�err�x
,x� = 2��
z

F

fx
,z�Rz�,x	Sx	,x� − �
z

F

Sx
,x	Rx	,z�fz�,x�

+ �
z,w,y

F

Sx
,x	Rx	,z�fz�,w�Rw�,y�Sy�,x�

− �
z,w,y

F

Sx
,y�Ry�,w�fw�,z�Rz�,x	Sx	,x�� , �38�

or, in matrix notation,

�err�xx = 2�S�xx�Rf�RS − 1��xx − 2��SR − 1�fR�xx�S�xx.

�39�

Equation �38� becomes Eq. �27� in the limit of infinite sepa-
ration between the fragments. As Eq. �38� suggests, the num-
ber of parameters in the error vector is reduced from N2 to
�x

Fnx
2. Thus, the computation of the DIIS error can be per-

formed faster �see Secs. III and IV� than in the conventional

SCF.
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Equation �38� can also be used in the curvy steps mini-
mization of the total energy with ALMOs.39

C. Perturbative correction of the converged SCF MI

The SCF MI energy with the block-diagonal constraints
�1� on the variational degrees of freedom is always higher
than the full SCF energy. It has been shown35 that the full
SCF binding energies between fragments cannot be repro-
duced accurately with this approximation even in large basis
sets. The perturbation theory developed here brings the SCF
MI energies much closer to the full SCF result.

The exact one-electron Hamiltonian is chosen as the full

SCF Fock operator f̂��̂MI� for the cluster, where �̂MI is the
converged SCF MI density operator. This one-electron
Hamiltonian is of course different from the converged cluster

one-electron Hamiltonian f̂��̂SCF�, which is built from the
fully converged supermolecule density �̂SCF. However, the
only cases for which perturbation results are valid are the

cases in which �̂MI is close to �̂SCF. Therefore, f̂��̂MI� is a
good representation of the fully converged cluster Fock op-

erator f̂��̂SCF�. Indeed, test calculations show the perturbative

expansion with f̂��̂MI� as the Hamiltonian converges and
gives good agreement with the full SCF result.

The zeroth-order Hamiltonian is taken as

f̂0��̂MI� = �̂MI f̂��̂MI��̂MI + �1̂ − �̂MI� f̂��̂MI��1̂ − �̂MI� . �40�

Orthonormal orbitals that diagonalize f̂0��̂MI� can be con-
structed by mixing the occupied ALMOs among themselves
and by mixing the virtual ALMOs among themselves,

��̄i� = �
x

F

�
j

ox

��xj�Kxj,i, �41�

��̄a� = �
x

F

�
j

�x

��xj�Kxj,a. �42�

The coefficients Kxj,p are such that 	�̄p� f̂0��̂MI���̄q�=�pq�̄p.

Clearly, the orbitals ��̄q� span the same occupied and virtual
subspaces as the converged nonorthogonal ALMOs. How-

ever, the orbitals ��̄q� are not localized on single fragments
anymore and are orthonormal.

The one-electron perturbation operator is written as

�̂��̂MI� = �̂MI f̂��̂MI��1̂ − �̂MI� + �̂MI f̂��̂MI��1̂ − �̂MI� . �43�

�̂��̂MI� has zero occupied-occupied and virtual-virtual blocks

in the ��̄q� basis by construction. Using standard perturbation

theory with f̂0��̂MI� and �̂��̂MI� one obtains the following
expression for the energy corrections:

E�1� = 0,

E�2� = 2�
i

O

�i
�2� = 2�

i

O

�
a

V
f̄ ia

2

�̄i − �̄a

,

�44�
�3�
E = 0,
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E�4� = 2�
i

O

�
a

V

�
b

V

�
j�i

O
f̄ ia f̄aj f̄ jb f̄bi

��̄i − �̄a���̄i − �̄ j���̄i − �̄b�

− 2�
i

O

�i
�2��

a

V
f̄ ia

2

��̄i − �̄a�2 ,

where f̄ ia= 	�̄i� f̂��̂MI���̄a�.
The correction for the orbitals is

��̄i
�1�� = �

a

V

��̄a�
�̄ai

�̄i − �̄a

. �45�

The second-order energy correction gives the same energy
lowering as an approximate Roothaan step based on the gra-
dient of the energy with respect to the occupied-virtual cou-
pling parameters.40,41 From the configuration point of view,
Eq. �44� corresponds to the second-order correction from
non-Brillouin singles and is equivalent to the LP SE MP2
correction proposed by Nagata and Iwata.36 The formalism
presented here is different from the original LP SE MP2. We
have chosen to use pseudocanonical orthogonal delocalized

MOs ��̄q� in order to avoid dealing with the nonorthogonal
singly excited determinants constructed from ALMOs. The
downside of the simplicity of our formalism is the delocal-

ization of the MOs ��̄q�. The perturbative method developed
here is referred to as locally projected SCF for molecular
interactions with approximate single Roothaan step perturba-
tive correction or SCF MI�ARS�.

Correction of the infinite order can be obtained by a

diagonalization of the f̂��̂MI� matrix in the AO basis. This
approach is closely related to the single Roothaan step cor-
rection in dual-basis set calculations40 and, therefore, re-
ferred to as SCF MI�RS�. The energy correction in this case
is

E��� = 2 Tr f̂��̂MI���̂� − �̂MI� , �46�

where �̂� is the density constructed from the orbitals ob-

tained from the full diagonalization of f̂��̂MI� in the AO ba-
sis.

Convergence of the perturbation expansion together with
computational efficiency of both SCF MI�ARS� and SCF
MI�RS� methods will be discussed in Sec. IV.

III. IMPLEMENTATION

The SCF MI, SCF MI�ARS�, and SCF MI�RS� algo-
rithms were implemented in a development version of the
Q-CHEM software package.42 This section describes the scal-
ing properties of these algorithms.

A. SCF MI algorithm

Several components of a conventional SCF algorithm
must be modified to perform the SCF MI calculations. First,
the initial guess at the MO coefficients must satisfy the
block-diagonal constraints �1�. Second, the evaluation of the
density matrix requires the inverse of the ALMO overlap
matrix. Third, the generalized DIIS error vector �38� is cal-

culated in place of the conventional DIIS error vector �27�.
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Finally, the diagonalization of the full Fock matrix is re-
placed with the construction and diagonalization of F effec-
tive locally projected Fock matrices.

The initial guess at the density matrix was constructed
from the superposition of the converged MOs on isolated
fragments. MOs on a fragment can be converged in time
proportional to n3. Thus, the formation of the initial guess for
the cluster scales as Fnnn �i.e., linearly with system size�.

The one-electron density matrix produced from the non-
orthogonal orbitals is evaluated as

R = T�−1T† = T�T†ST�−1T†. �47�

Since the matrix T has block-diagonal structure, all matrix
multiplies that involve T can be performed block by block,
resulting in time savings proportional to the number of
blocks. With the utilization of block-by-block multiplication,
the calculation of � requires 2�x

F�Nnxox+Onxox� floating
point operations �FLOPs� and, therefore, scales as F2nno. We
used Cholesky factorization to invert � which, in principle,
can be made linear in O with the use of sparsity of �. Con-
struction of R from T and �−1 takes 2�x

F�Onxox+Nnxox�
FLOPs and also scales as F2nno. Thus, the overall density
matrix construction scales as F2nno. Compared to F3nno for
the conventional procedure, speedups of the order of F �i.e.,
proportional to system size� are expected in this part of the
SCF MI algorithm for large systems.

The DIIS error matrix can be evaluated according to Eq.
�39�. However, matrix multiplications of N
N matrices f,
R, and S scale cubically with N. In order to avoid N3 steps
we rewrite Eq. �39� as

�err�xx = 2�S�xx�T�−1T†f�T�−1T†S − 1��xx − transpose

= 2�ST�xx���−1�T†fT��−1��T†S��xx

− 2�ST�xx��−1�T†f��xx − transpose. �48�

If the calculation of err is performed in the order specified
by the parentheses, then the most expensive matrix multi-
plies, namely, f
T and fT
�−1, scale as F2nno and F3noo,
respectively. The total number of matrix multiplies is 9, and
the maximum temporary double-precision storage is 3NO.
Therefore, the scaling of the overall DIIS error matrix evalu-
ation, max�F2nno ,F3noo�, favorably compares with the con-
ventional cubic scaling, which in terms of fragments is
4F3nnn. It is also worth noting that, unlike the previously
proposed error vector,34 error vector �48� does not require
evaluation of the projected Fock matrix nor the effective
overlap matrix �see next paragraph� and, therefore, is faster.

Blocks of the locally projected Fock matrix are built
from the full Fock matrix in the current implementation of
the SCF MI algorithm. In the case of the Gianinetti equa-
tions, the projected Fock matrix and the effective overlap

matrix are computed according to the following equations:
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�fG
x �xx = �f�xx − ��fT���−1T†S��xx − transpose

+ ��ST�−1��T†fT���−1T†S��xx

+ �fT�−1�xx��−1T†S�xx + transpose

− ��ST�−1��T†fT��−1�xx��−1T†S�xx − transpose

+ �ST�−1�xx��−1�T†fT��−1�xx��−1T†S�xx, �49�

�SG
x �xx = �S�xx − ��ST���−1T†S��xx

+ �ST�−1�xx��−1T†S�xx. �50�

For the Stoll equations, the projected Fock matrix and the
effective overlap matrices are given by

�fS
x�xx = �f�xx − ��fT���−1T†S��xx − transpose

+ ��ST�−1��T†fT���−1T†S��xx

+ �fT�−1�xx�T†S�xx + transpose

− ��ST�−1��T†fT��−1�xx�T†S�xx − transpose

+ �ST�xx��−1�T†fT��−1�xx�T†S�xx, �51�

�SS
x�xx = �S�xx. �52�

Again, we performed matrix multiplications in the order
specified by the parentheses to achieve better scaling. Con-
struction of both fG

x and SG
x matrices requires 17 matrix mul-

tiplications and 3NO+OO+2Nn words of double-precision
temporary storage. fS

x and SS
x can be computed with 12 matrix

multiplications and 3NO+2Nn words of temporary storage
memory. However, in both cases the most expensive multi-
plies scale as max�F2nno ,F3noo�. All the multiplies that can
be skipped in calculations with the Stoll method are inexpen-
sive and will not lead to significant time savings relative to
the Gianinetti method. In principle, the amount of temporary
storage can be further decreased to NO, but this will com-
promise the speed of the calculations.

The formation of the locally projected Fock matrix of
Nagata requires inversion of the MO overlap matrices ��x

individually for each fragment. The calculation of F inverse
matrices �O−ox�
 �O−ox� scales as F4ooo. Therefore, the
algorithm based on the SCF MI equations of Nagata be-
comes inferior to the locally projected formalism of Stoll and
Gianinetti for systems with large numbers of fragments.
Making some approximations to the MO overlap matrix can
improve the overall scaling of the Nagata method,29 but we
will not consider this approach further here.

The subsequent diagonalization of the diagonal blocks of
the projected Fock matrix scales as Fnnn �i.e., linearly with
the number of fragments� and therefore does not represent
the bottleneck of the SCF MI iterative procedure. It is worth
noting that parallelization of the SCF MI is straightforward
and is expected to be very efficient.

B. SCF MI„ARS… and SCF MI„RS… algorithms

The implementation of the second-order perturbative
correction is relatively simple. First, we orthogonalize the
ALMOs using inverse Cholesky factors �L� of the full MO

overlap matrix �NN,
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�NN = LL†, �53�

C0 = CMI�L−1�†. �54�

The lower triangular structure of L−1 guarantees invariance
of the occupied subspace given that the occupied orbitals are
represented by the first O columns of CMI. C, T, are V are
MO coefficient matrices for all, occupied, and virtual orbit-
als, respectively.

The Fock matrix in the basis of orthogonalized MO or-
bitals is calculated from the converged SCF MI Fock matrix
f�RMI�,

f0 = C0
†f�RMI�C0. �55�

The diagonalization of the occupied-occupied and virtual-
virtual blocks yields orthogonalized pseudocanonical MOs

��̄q�,

�f0�OOT = T�̄O, �56�

�f0�VVV = V�̄V, �57�

with a coefficient matrix given by

C̄ = C0�T � V� . �58�

The Fock matrix in the pseudocanonical basis,

f̄ = �T � V�†f0�T � V� , �59�

is used to calculate the energy correction according to Eq.
�44� and the correction to the orbitals according to Eq. �45�.
The matrix equations for the corrected occupied orbitals T̄c

and the corrected density matrix Rc are

T̄c = V̄M , �60�

Rc = T̄c�T̄c†ST̄c�−1T̄c†, �61�

where elements of V
O M matrix are Mai= f̄ ai / ��̄i− �̄a�.
The most computationally expensive steps of this SCF

MI�ARS� algorithm are the evaluation of the Fock matrix in
the orthogonalized �55� and pseudocanonical �59� MO rep-
resentations, as well as the diagonalization of the virtual-
virtual block of f0 �57� and the formation of the perturbed
density matrix Rc �61�. These steps scale as N3, NV2, V3, and
N3, respectively.

The infinite-order perturbative correction �SCF MI�RS��
is obtained by full diagonalization of the final converged
Fock matrix f�RMI� in the last iteration of the SCF MI pro-
cedure �an N3 step�. The corrected density matrix is then
constructed from the orthogonal eigenvectors of f�RMI� �an
N3 step�. The energy correction is calculated according to Eq.
�46� �an N2 step�. The infinite-order correction can serve as
an indicator of the convergence of the perturbation expres-
sion and does not contain steps that scale higher than N3.

IV. RESULTS AND DISCUSSION

The Hartree–Fock method and density functional theory
with the EDF1 functional43 were used to test the perfor-

mance of the locally projected methods for water clusters.
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Each water molecule was considered as a separate fragment.
All energies were calculated with a development version of
the Q-CHEM software package.42 Linear-scaling algorithms
were employed for the formation of the Fock
matrix.12,13,15,16,19 The integral threshold was set to 10−8. The
DIIS criterion for SCF convergence was taken to be 10−5.

A. Accuracy of the locally projected methods

HF calculations were carried out for water dimers, trim-
ers, tetramers, pentamers, and hexamers with gradually in-
creasing basis set sizes �cc-pVDZ, aug-cc-pVDZ, cc-pVTZ,
aug-cc-pVTZ, cc-pVQZ, and aug-cc-pVQZ�. The structures
of the clusters were optimized at the HF/cc-pVDZ level of
theory. The calculated binding energies for the full SCF,
counterpoise corrected �CP� SCF, SCF MI, SCF MI�ARS�,
and SCF MI�RS� are given in Table I. Figure 1 shows the
average percentage of the full SCF binding energy recovered
with the CP SCF, SCF MI, and SCF MI�RS� methods. The
error bars in Fig. 1 indicate the spread in the recovered en-
ergies for clusters of different size �dimer-hexamer�.

Our calculations closely reproduce the energies obtained
by Nagata et al.29 �Table II in the original paper� for the SCF,
CP SCF, and SCF MI methods. The large BSSE obtained for
calculations done with cc-pVXZ basis sets is significantly
reduced by addition of diffuse functions, i.e., in aug-cc-
pVXZ the BSSE is around 1% of the binding energy �Fig. 1�.
It has been observed previously29 that the performance of the
SCF MI method in terms of the full SCF binding energy
recovery increases as the basis set approaches completeness
�Fig. 1�. However, even for essentially complete sets, such as
aug-cc-pVQZ �BSSE is less than 1%�, the percentage of the
binding energy recovered is still very low �75%–82%�. This
relatively poor behavior of the SCF MI method must be at-
tributed to the loss of variational degrees of freedom in the
constrained MOs �1�. The excluded degrees of freedom are
associated with charge transfer between the fragments as
well as with BSSE. Since charge transfer contributes signifi-
cantly to the hydrogen bonding in water clusters3 the SCF
MI energies are higher than the CP SCF energies. Therefore,

FIG. 1. Percent of the full SCF binding energy recovered in with the CP
SCF, SCF MI, and SCF MI�RS� methods for small water clusters.
the SCF MI theory can only be reliably applied to systems in
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which charge-transfer effects between components are negli-
gible and interactions are purely electrostatic.

For systems with non-negligible charge-transfer effects
perturbative corrections can provide a good approximation to
the full SCF energies. Unfortunately the perturbation also
reintroduces BSSE into the interaction energy. Thus, the SCF
MI�RS� energies can be lower than the CP SCF energies
especially for small basis sets �Fig. 1�.

As seen from Table I the binding energies obtained with
the SCF MI�ARS� and SCF MI�RS� perturbation methods do
not differ more than 0.01 kcal/mol per hydrogen bond. The
fourth-order energy correction on water clusters �not shown
here� is in general less than 0.1% of the second-order correc-
tion. Therefore, we conclude that the perturbation expansion
is satisfactorily converged at second order for water clusters
with molecules around their equilibrium distances from each
other.

TABLE I. Binding energies �kcal/mol� for small wat

Dimer

cc-pVDZ
SCF −5.78
CP SCF −3.87
SCF MI −3.44
SCF MI�ARS� −5.22
SCF MI�RS� −5.22

aug-cc-pVDZ
SCF −3.88
CP SCF −3.67
SCF MI −2.95
SCF MI�ARS� −3.72
SCF MI�RS� −3.72

cc-pVTZ
SCF −4.46
CP SCF −3.68
SCF MI −3.30
SCF MI�ARS� −4.23
SCF MI�RS� −4.23

aug-cc-pVTZ
SCF −3.70
CP SCF −3.63
SCF MI −3.03
SCF MI�ARS� −3.60
SCF MI�RS� −3.60

cc-pVQZ
SCF −4.00
CP SCF −3.68
SCF MI −3.10
SCF MI�ARS� −3.84
SCF MI�RS� −3.84

aug-cc-pVQZ
SCF −3.70
CP SCF −3.67
SCF MI −3.01
SCF MI�ARS� −3.59
SCF MI�RS� −3.59
The SCF MI�RS� method recovers as much as 96%–97%
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of the full SCF binding energy in large basis sets �aug-cc-
pVTZ and aug-cc-pVQZ�. For small basis sets such as cc-
pVDZ the performance of the corrected methods is worse
�90% of the full SCF binding energies� and additional care
must be taken to remove the reintroduced BSSE.

To test how the quality of results depends on the distance
between water molecules, potential energy curves were gen-
erated for the water dimer at the HF/aug-cc-pVDZ level. All
geometric parameters other than the O–O distance were fixed
at the MP2/aug-cc-pVDZ minimum energy structure. Results
of the SCF MI and SCF MI�RS� methods were compared
with the conventional SCF energies and the CP SCF energies
�Fig. 2�. Figure 2 shows that the SCF MI method reproduces
only 81% of the full SCF binding energy �85% of the CP
SCF energy� and gives a larger minimum energy O–O dis-
tance whereas the corrected methods significantly improve
the energies: SCF MI�ARS� and SCF CP curves almost co-

sters.

mer Tetramer Pentamer Hexamer

7.57 −29.89 −39.01 −47.10
1.54 −21.10 −28.49 −34.93
9.20 −16.62 −22.62 −28.06
5.40 −26.49 −34.85 −42.32
5.39 −26.47 −34.84 −42.29

1.44 −20.74 −27.67 −33.64
0.73 −19.59 −26.21 −31.85
8.04 −14.37 −19.16 −23.47
0.82 −19.53 −26.05 −31.72
0.82 −19.53 −26.04 −31.71

3.37 −23.63 −31.25 −37.80
1.10 −20.23 −27.13 −33.03
9.07 −15.97 −21.35 −26.31
2.42 −21.99 −29.16 −35.40
2.41 −21.98 −29.15 −35.40

0.90 −20.00 −26.84 −32.65
0.70 −19.68 −26.43 −32.17
8.45 −14.98 −20.09 −24.68
0.50 −19.18 −25.73 −31.34
0.50 −19.18 −25.73 −31.34

1.84 −21.38 −28.52 −34.62
0.93 −20.02 −26.85 −32.67
8.56 −14.97 −19.95 −24.54
1.21 −20.16 −26.89 −32.72
1.21 −20.16 −26.89 −32.72

0.87 −19.95 −26.77 −32.58
0.79 −19.83 −26.62 −32.40
8.43 −14.89 −20.04 −24.74
0.50 −19.15 −25.72 −31.37
0.50 −19.15 −25.72 −31.36
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incide at all distances. Our results reproduce those obtained
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by Nagata et al. and confirm that our SCF MI�ARS� formal-
ism is equivalent to the LP SE MP2 published previously,36

despite the very different form of the working equations.
Summarizing, the test calculations on small water clus-

ters show that in order to obtain accurate SCF interaction
energies, the single Roothaan step perturbative method
should be used after the SCF MI iterative procedure. Large
basis sets are desirable to obtain accurate energies. As we
will show in Sec. IV B the computational advantage of the
SCF MI method grows with basis set size.

B. Convergence and computational efficiency of the
locally projected methods

As discussed in the Introduction, each SCF iteration can
be represented as a sequence of two steps. On the first step
the Fock matrix is constructed from the density matrix �we
denote this step as DM2F�; on the next step a new density
matrix is obtained from the constructed Fock matrix
�F2DM�. The second step traditionally includes three com-
ponents: the DIIS extrapolation of the Fock matrix �DIISX�,
the diagonalization of the extrapolated Fock matrix �F2MO�,
and the construction of the density matrix from the newly
obtained MOs �MO2DM�. As mentioned before, we use the
SCF MI method to remove the bottleneck associated with the
second step, F2DM. In this subsection we present the speed-
ups achieved by replacing three parts of the conventional
F2DM step with their SCF MI equivalents. The speedup is
defined simply as the ratio of the time necessary to perform
computation in the conventional SCF algorithm to the time
taken by the SCF MI algorithm. The speedups predicted
from counting FLOPs are �n /o�2 for the DIISX and F2MO
routines �see Sec. III�, and F for the MO2DM.

Table II summarizes speedups for all three routines
in calculations on large two-dimensional water clusters in
6-31g�d , p� basis set ��n /o�2=25�. It can be seen that the
speedups achieved for DIISX and F2MO are larger than the
predicted factor of 25 even for systems of moderate size
�several hundred basis set functions�. This effect can be ex-
plained by improved CPU cache effectiveness when per-
forming small block-by-block matrix multiplications in

FIG. 2. Potential energy curve for water dimer, HF/aug-cc-pVDZ.
DIISX. Smaller blocks are more likely to fit into the CPU
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cache which further increases the relative speed of the SCF
MI algorithm. For large matrices in the SCF routines a sig-
nificant amount of time is spent loading-unloading cache
data. In the case of the F2MO routine large speedups are
explained by the large prefactors in the conventional diago-
nalization code. The speedups in the case of MO2DM are
lower than predicted since the prediction does not take into
account time spent for � inversion. Although the inversion
scales only as O3, it has a large prefactor and becomes neg-
ligible only for very large systems.

The combined speedup for the F2DM step is also shown
in Table II. For 144 water molecules the speedup for this step
is about two orders of magnitude. Figure 3 represents the
relative amounts of time spent in the Fock formation
�DM2F� and the diagonalization �F2DM� routines for both
SCF and SCF MI iterations. For large systems most of the
CPU time in the conventional SCF code is spent for the
diagonalization �98% for the diagonalization, N=7200�,
while in the SCF MI code the Fock formation remains the
limiting step for these systems �73% for the Fock formation,
N=7200�. Therefore, the SCF MI algorithm removes the di-
agonalization bottleneck for calculations on large systems
containing multiple fragments. As predicted from counting
FLOPs, speedups for the diagonalization increase with the
size of the basis set. For example, the diagonalization speed-
ups for the water hexamer are 6.3, 17.0, and 25.4 in aug-cc-

TABLE II. Speedups for 6-31g�d , p� calculations on large water clusters.
Results are the same for both HF and EDF1 calculations.

No. of
molecules

Basis set
size, N

Routine

F2DM OverallaDIISX F2MO MO2DM

9 225 8.50 11.33 1.00 7.57 0.84
18 450 35.00 34.73 1.80 27.65 1.05
36 900 58.03 67.02 4.48 50.02 1.45
72 1800 105.26 95.37 7.38 80.50 2.81

144 3600 125.10 102.55 12.59 97.13 5.63
288 7200 172.59 104.83 15.79 108.26 8.20

aFor EDF1/6-31g�d , p� calculations.

FIG. 3. Percent of iteration time spent in Fock build and diagonalization for
SCF �solid lines� and SCF MI �dashed lines� iterations. Large water clusters,

EDF1/6-31g�d , p�.
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pVDZ, aug-cc-pVTZ, and aug-cc-pVQZ, respectively. Thus,
the SCF MI method is computationally effective for large
basis set calculations.

It is remarkable that some speedup can be achieved in
the formation of the Fock matrix �DM2F� without any modi-
fication of the algorithms or code used for this step. For
example, the time spent for the exchange matrix construction
in the HF/cc-pVDZ calculations is decreased by roughly a
factor of 2 �using the LinK algorithm19� just by virtue of
using the SCF MI density matrices. The Coulomb matrix is
also evaluated faster with the SCF MI density in HF calcu-
lations �speedups are approximately a factor of 1.5�. This
improvement is due to the fact that these linear-scaling algo-
rithms for the Fock formation exploit the locality of the or-
bitals that are used to construct f.12,13,15,16,19 Therefore, the
absolutely localized orbitals produced in the SCF MI method
give some improvement for this step, because they are giving
a density matrix that is more strongly localized than is the
case in conventional SCF calculations on the same systems.

The efficiency of the proposed DIIS extrapolation
scheme is illustrated in Table III. As one can see, the number
of iterations in the SCF MI procedure is decreased signifi-
cantly when DIIS extrapolation is used. Comparison of the
DIIS-accelerated SCF MI with the conventional DIIS-
accelerated SCF calculation shows that the number of SCF
MI iterations is smaller than the number of conventional SCF
iterations, particularly for the EDF1 functional. The reason
for the faster convergence of the SCF MI procedure is the
high quality of the initial guess �generated as a superposition
of the converged orbitals on isolated fragments �SMO��.
When the conventional SCF is performed with the SMO
guess instead of the superposition of the atomic densities
�SAD� guess, a large number of iterations can be saved
�Table III�, especially with the EDF1 functional. The genera-
tion of the SMO initial guess is rapid compared to the itera-
tion time, and is a useful alternative to the SAD guess. In
combination with DIIS extrapolation, this makes the SCF MI
method a practical tool for calculations on large systems of
the weakly interacting fragments. Finally, one can see from
Table III that the locally projected equations of Stoll require
approximately the same number of steps as the equations of
Gianinetti. Both formulations converge to the same result
and take the same CPU time.

As mentioned before, both SCF MI�ARS� and SCF
MI�RS� give essentially the same energies and do not contain
steps that scale higher than N3. However, the SCF MI�ARS�
needs approximately twice as much time as the SCF MI�RS�

TABLE III. Average number of SCF iterations for water clusters containing
9–288 molecules; 6-31g�d , p� basis sets.

Method
Gianinetti
SCF MI

Stoll
SCF MI

Gianinetti
SCF MI

Stoll
SCF MI SCF SCF

Acceleration DIIS DIIS none none DIIS DIIS
Initial guess SMO SMO SMO SMO SAD SMO

HF 6–7 7 9–10 10 7–8 5–6
EDF1 7 7 �30 �30 8–17 6
algorithm in all test calculations due to the need for numer-
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ous matrix multiplications and several diagonalizations
�53�–�61�. Therefore, the SCF MI�RS� is more practical and
should be used to perform corrections to the energy and to
the orbitals after the SCF MI iterative procedure.

The last column of Table II shows the speedups for the
entire computation for water clusters of different sizes using
the HF/6-31g�d , p� SCF MI�RS� method. The overall
speedup is approximately one order of magnitude for the
6-31g�d , p� basis set, and is expected to be higher for larger
basis sets. The overall speedup is not as high as the speedup
for the diagonalization step, since a significant amount of
time is still spent for the Fock formation and in the last Fock
diagonalization for SCF MI�RS� correction. Therefore, fast
methods for the Fock construction that take into account the
block-diagonal structure of the constrained MO orbitals are
desirable to further exploit the potential of the SCF MI ap-
proach.

V. CONCLUSIONS

In this paper, we have revisited a locally projected self-
consistent field method for molecular interactions �SCF MI�,
which is appropriate for molecular clusters and liquids. The
central approximation in SCF MI is to expand molecular
orbitals �MOs� of a given fragment in terms of only the
atomic orbitals �AOs� that are on atoms in that fragment.
This leads to absolutely localized MOs �ALMOs� that are
free from basis set superposition errors �BSSE�, but that also
prevent charge transfer between fragments. Our main conclu-
sions are as follows:

�1� Our formulation and implementation are the first to ex-
plicitly take advantage of the computational savings
that are possible in this approach. Additionally we have
presented a simple formulation of a correction for
charge-transfer effects that is based on performing one
final diagonalization of the Fock matrix obtained from
a converged SCF MI calculation.

�2� As was known previously, SCF MI cannot quantita-
tively reproduce the results of full SCF calculations for
hydrogen bond energies of water clusters in even large
basis sets. However, good accuracy is achieved if the
SCF MI iteration scheme is combined with the charge-
transfer perturbative correction �SCF MI�RS�� in large
basis set calculations. Comparison of energies with and
without correction allows extraction of electrostatic and
charge-transfer contributions to intermolecular interac-
tion energies.

�3� The computational advantage of SCF MI over the con-
ventional SCF method grows with both basis set size
and number of fragments. Although still cubic scaling,
SCF MI effectively removes the diagonalization step as
a bottleneck in these calculations, because it contains
such a small prefactor. In combination with the single
step correction, substantial speedups are obtained.

�4� The combination of good accuracy with substantial
computational advantage suggests that SCF MI�RS�
could be valuable for first principles studies of potential

surfaces �and possibly to drive dynamics on those sur-
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faces� of large clusters, and nanosolvation by such clus-
ters, as well as possibly studies of liquids and solutions.

A number of follow-on research developments appear
useful based on this work. The development of specialized
algorithms to construct the Fock matrix exploiting the block
structure of the ALMOs is one example, while the formula-
tion and implementation of the analytical gradient of the
charge-transfer corrected energy expression is a second ex-
ample.
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