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Efficient evaluation of the error vector in the direct inversion
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Abstract

Faster computation of the Pulay error vector for the direct inversion in the iterative subspace acceleration scheme is achieved by
expanding the density matrix in terms of the occupied molecular orbitals and by performing matrix multiplications in an optimal order.
The predicted speed-up over the usual implementation is N/O, where N is the size of the atomic orbital basis set, and O is number of
occupied molecular orbitals, which is confirmed by test calculations.
� 2005 Elsevier B.V. All rights reserved.
Direct inversion in the iterative subspace (DIIS) is one
of the most efficient methods for accelerating the conver-
gence of the self-consistent field (SCF) iterative procedure
[1,2]. In this method, the approximate solution on the cur-
rent iteration is found by an interpolation in the subspace
spanned by the results of several previous iterations. The
interpolation coefficients are obtained from the so-called
�error vectors�, or residuals, which are evaluated on every
iteration.

The calculation of the error vector is the most compu-
tationally expensive part of the DIIS scheme. The evalu-
ation of the most widely used error vector proposed by
Pulay in 1982 [2] scales as N3, where N is the basis set
size. This step takes significant time in each SCF itera-
tion, when performing calculations on large systems.
For large systems, linear scaling methods make evaluation
of the Coulomb [3–6], exact exchange [7], and exchange-
correlation [8,9] parts of the Fock matrix inexpensive
compared to matrix manipulations. For example, the
DIIS error vector formation takes from 13% to 34% of
iteration time in the Hartree–Fock/DFT calculations on
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288 water molecules with 6-311g(d,p) or cc-pVDZ basis
(around 7000 basis functions) depending on the platform
architecture. In this Letter, we propose a faster algorithm
for calculating the Pulay error vector.

Usually, the DIIS error vector elements for the closed-
shell systems are expressed as:

errlm ¼ 2h/0
l j ð1̂� q̂ÞF̂ q̂ j /0

mi � h.c., ð1Þ

where j /0
mi are orthogonalized atomic orbitals, q̂ is the

one-electron density matrix operator, and F̂ is the Fock
operator. Orthogonalization of the atomic basis set is used
to produce a more balanced error vector [2].

The error vector can be re-written:

errlm ¼ 2
XN

skrgq

X lsðdsk �
XN

p

SspRpkÞF krRrgSgqX qm � h.c.

¼ 2
XN

krgq

X lkF krRrgSgqX qm � h.c., ð2Þ

where F, R, S are the Fock, density, and overlap matrices,
and X is the orthogonalization matrix, which usually is ta-
ken to be S�1/2.

Traditionally the DIIS error vector is computed accord-
ing to Eq. (2) and requires four matrix multiplications,
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Table 1
Speed-ups of the DIIS error vector computation

# of molecules Basis

6-311G cc-pVDZ 6-311G(d,p) 6-311(++)G(d,p)

9 1.67 2.00 2.25 2.73
18 2.33 2.76 3.12 3.39
36 2.73 3.22 3.84 4.49
72 3.19 3.91 4.66 5.41
144 3.64 4.46 5.34 6.21
288 3.88 4.75 5.82 6.92
8N3/(4N2O

+ 4NVO)
4.38 5.36 6.55 7.74
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each of which has approximately 2N3 floating point opera-
tions (f.p.o.). When counting f.p.o.�s, we neglect quadratic
steps, like matrix subtraction or transpositions.

Eq. (1) can be represented in a slightly different form to
achieve better scaling:

errlm ¼ 2
XV

a

XO

i

h/0
l j waihwa j F̂ j wiihwi j /0

mi � h.c., ð3Þ

¼ 2
XN

rk

XV

a

XO

i

C0
laCkaF krCrjC

0
mj � h.c., ð4Þ

where jwkæ are spatial molecular orbitals, O,V are the num-
ber of occupied and virtual spatial molecular orbitals, C, C 0

are molecular orbital coefficients in the atomic orbital and
orthogonalized atomic orbital basis sets, respectively.

Eq. (4) can be written in the following matrix form:

err ¼ 2ððC0
V ðC

y
V ðFCOÞÞÞC0y

OÞ � h.c. ð5Þ
Again, according to Eq. (5), it is necessary to perform four
matrix multiplications to calculate the error vector. How-
ever, if the multiplications are done in the order specified
by the parentheses, the first and the last matrix multiplies
require only 2NNO f.p.o. each, and the other two multi-
plies have 2NVO f.p.o. each. Therefore, the total number
of f.p.o. is 4NNO + 4NVO � 8NNO. Compared to the
conventional 8N3 f.p.o., the expected speed-up is N/O.

It should be noted that the evaluation of the molecular
orbital coefficients in the orthogonalized atomic orbital
basis set C 0, which enters Eq. (5), does not require an addi-
tional matrix multiplication. C 0 matrix is an intermediate
result in the conventional diagonalization scheme. It can
be saved and re-used in the error vector construction.
In the case of the spin-unrestricted wavefunction, the
error vector can be constructed from the separate error vec-
tors for a and b spins using the same trick.

The proposed algorithm has been implemented in a devel-
opment version of the Q-Chem software package [10]. Har-
tree–Fock calculations on two-dimensional water clusters
are used to test the performance of the scheme. A series of
basis sets, 6-311G, 6-311G(d,p), 6-311(++)G(d,p), cc-
pVDZ,were used to illustrate how the speed-ups changewith
basis set size. Linear scaling algorithms are employed for the
formation of the Fock matrix [3,5,7].

As one can see from Table 1 the new method for the
DIIS error vector calculation is effective even for small sys-
tems. As the size of the system increases the speed-ups are
approaching the value predicted from the f.p.o. analysis
(last row in bold). As expected, larger speed-ups are
obtained for larger basis sets.

Thus, we achieve faster computation of the DIIS error
vector by expanding the one-electron density matrix in
terms of the occupied molecular orbitals and by using the
associativity property to perform matrix multiplications
in an optimal order for efficiency. While we have employed
dense linear algebra routines to evaluate the error vector,
the formulation we have introduced here (as well as the ori-
ginal formulation) can in principle also be used with sparse
matrix routines to lower the computational scaling with
system size from cubic towards linear, similar to linear scal-
ing diagonalization replacements [11–13].
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